
 © 2016, IJCSE All Rights Reserved 98

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-10 E-ISSN: 2347-2693

Matrix Multiplication using Strassen’s Algorithm on CPU & GPU

Utsab Ray
1
*, Tapan Kumar Hazra

2
 and Utpal Kumar Ray

3

1
Department of Information Technology, Institute of Engineering & Management, Kolkata, India

2
 Departmentof Information Technology, Institute of Engineering & Management, Kolkata, India

3
Department of Information Technology, Jadavpur University, Kolkata, India

Available online at: www.ijcseonline.org

Received: 23/Sep/2016 Revised: 02/Oct/2016 Accepted: 17/Oct/2016 Published: 31/Oct/2016

Abstract— In this paper we have successfully implemented Matrix Multiplication using Strassen's Algorithm on a NVIDIA

GPU using CUDA. We have used the multiple cores of the GPU to reduce the computation time drastically. We have also

compared the time taken by matrix multiplication using Strassen's algorithm on both CPU and GPU. We have found that the

GPU implementation was much faster, but only when the recursion was performed till a certain limit. Beyond that limit, the

computation took much more time than expected. Also, we found that implementing Matrix Multiplication using Strassen's

algorithm on the CPU yielded some very positive results. By conducting experiments, we came to the conclusion that the

recursion limit can be comparatively smaller for matrix multiplication using Strassen's algorithm on CPU than for matrix

multiplication using Strassen's algorithm on GPU.

Keywords— GPU, CUDA, Matrix Multiplication, Strassen’s Algorithm, Cache, Speedup

I. INTRODUCTION

Matrix multiplication is one of the most basic and crucial

linear algebra operations. Matrix multiplication is used for a

variety of scientific calculations in a variety of fields, and

any decrease in the computation time will be extremely

beneficial. The complexity of matrix multiplication using the

classic method(using 3 for loops) is O(n
3
). But there are

other algorithms which have a lower complexity than O(n
3
).

The current O(n
k
) algorithm with the lowest known exponent

k is a generalization of the Coppersmith–Winograd

algorithm that has an asymptotic complexity of O(n
2.3728639

),

by François Le Gall[1]. However, the constant coefficient

hidden by the Big O notation is so large that it is not feasible

to implement these algorithms [2]. Thus Strassen's algorithm

is the most feasible algorithm to implement on modern day

computers, as it has a complexity of O(n
2.807

). Strassen's

algorithm achieves a lower complexity by using 7

multiplications, instead of 8, as is used in the traditional 3

loop matrix multiplication. We have discussed further about

Strassen’s algorithm later on in the paper.

In Section 2 we have discussed about some of the work

which has been done in this field. Section 3 has some

general information about Strassen’s Algorithm. A general

overview of GPU and CUDA has been given in section 4.

Section 5 contains an explanation of the CUDA kernel. The

desgin and implementation of Strassen’s Algorithm has been

described in section 6. In section 7, the experimental setup

has been described. The experimental results have been

documented in section 8. Ultimately we have concluded in

section 9.

II. RELATED WORK

There has been some, although not much work related to

implementing Strassen’s algorithm on the GPU. Li, Ranka

and Sahni [3] have implemented Strassen’s algorithm on

GPU, but they have not talked about the recursion limit.

Arafat, Elango and Sadayappan[4] have implemented

Strassen-Winograd’s algorithm for matrix multiplication on

the GPU. They’ve also discussed about a cutoff point, where

the algorithm switches from Strassen’s algorithm to the

classic method. Yugopuspito, Sutrisno, and Hudi[5] have

talked about managing the memory required for

implementing Strassen’s algorithm. Since it is a recursive

algorithm, multiple matrices are declared at each step, and

hence the memory required is quite large. Khan, Al-

Mouhamed and Fatayer[6] have further developed a method

to optimize Strassen’s algorithm on GPU.

III. STRASSEN’S ALGORITHM

Volker Strassen [7] first published this algorithm in 1969
and proved that the three loop method to multiply two
matrices was not optimal.
Let A, B be two matrices. We want to calculate the matrix
product C, where C = AB
We partition A, B and C into equally sized block matrices,

 Fig 1. Partitioning of matrices

Corresponding Author: Utsab Ray, utsab_ray@yahoo.co.in

Department of Information Technology, Institute of Engineering &

Management, Kolkata, India

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 99

C1,1 = A1,1B1,1 + A1,2B2,1
C1,2 = A1,1B1,2 + A1,2B2,2
C2,1 = A2,1B1,1 + A2,2B2,1
C2,2 = A2,1B1,2 + A2,2B2,2

With this construction we have not reduced the number of
multiplications. We still need 8 multiplications to obtain the
result matrix C. To reduce the number of multiplications, we
define new matrices as follows

M1 = (A1,1 + A2,2)(B1,1 + B2,2)
M2 = (A2,1 + A2,2)B1,1
M3 = A1,1(B1,2 – B2,2)
M4 = A2,2(B2,1 – B1,1)
M5 = (A1,1 + A1,2)B2,2
M6 = (A2,1 – A1,1)(B1,1 + B1,2)
M7 = (A1,2 – A2,2)(B2,1 + B2,2)

We can see for the 7 matrices Mi, where 1<=i<=7, 7
multiplications are performed, thus reducing the number of
multiplications by 1. We obtain the result matrix C by
performing the computations listed below

C1,1 = M1 + M4 – M5 + M7
C1,2 = M3 + M5
C2,1 = M2 + M4
C2,2 = M1 – M2 + M3 + M6

[9]

We recursively keep on dividing the matrices into smaller
matrices until we get matrices of size 2x2. The time
complexity can be written as T(n) = 7*T(n/2) + O(n

2
). From

Master’s Theorem we can calculate the complexity to be
O(n

log 7
) which is approximately O(n

2.8074
) [8].

Originally

the algorithm was meant to be performed on two

matrices of dimension 2
n
x2

n
, as the matrices have to be

divided into 4 equal parts recursively. The division stops

once we reach a matrix of size 2x2. But practically the time

taken to perform Strassen’s algorithm on matrices below a

certain size is more than the time taken to do normal matrix

multiplication on those matrices. Thus there should be a

recursion limit. Below the recursion limit, the program

should switchover from Strassen’s algorithm to normal

matrix multiplication. This will ensure an optimal solution.

This also means that we do need matrices that are of the

order 2
n
x2

n
. As long as the dimensions of the matrices are

perfectly divisible by the recursion limit, we should not face

any problem. We have discussed further about the recursion

limit later on in this paper.

IV. GPU & CUDA

Graphics Processing Units or GPUs have multiple streaming
processors(SM), which have multiple cores which can be
used for computational purposes. CUDA allows developers
to access these cores and use them for their own
computations, which is known as GPU computing. CUDA is
a parallel computing platform and application programming

interface(API) model created by Nvidia. It is a massively
multi-threaded parallel computing platform. Using high-
level languages, GPU-accelerated applications run the
sequential part of their workload on the CPU – which is
optimized for single-threaded performance – while
accelerating parallel processing on the GPU.

The Nvidia GPU we have used while conducting
experiments is Quadro K620. This GPU has 1985 MB of
memory available for computation. The GeForce 820m has a
CUDA Capability of 5.0. It has 3 streaming
multiprocessors(SM), each of which have 128 CUDA cores.
Thus, in total it has 384 CUDA cores. The maximum
number of threads per streaming multiprocessor(SM) is 1536
and the maximum number of threads per block is 1024.

 Fig 2. Grid of Thread Blocks

Threads and blocks are the main aspects of the CUDA
Programming Model. CUDA C extends C by allowing the
programmer to define C functions, called kernels, that, when
called, are executed N times in parallel by N different
CUDA threads, as opposed to only once like regular C
functions [9]. Threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional thread
index, forming a one-dimensional, two-dimensional, or
three-dimensional block of threads, called a thread block.
This provides a natural way to invoke computation across
the elements in a domain such as a vector, matrix, or
volume. There is a limit to the number of threads per block,
since all threads of a block are expected to reside on the
same processor core and must share the limited memory
resources of that core. On current GPUs, a thread block may
contain up to 1024 threads. However, a kernel can be
executed by multiple equally-shaped thread blocks, so that
the total number of threads is equal to the number of threads
per block times the number of blocks. Blocks are organized
into a one-dimensional, two-dimensional, or three-
dimensional grid of thread blocks. The number of thread

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 100

blocks in a grid is usually dictated by the size of the data
being processed or the number of processors in the system,
which it can greatly exceed [10].

CUDA threads may access data from multiple memory
spaces during their execution. Each thread has private local
memory. Each thread block has shared memory visible to all
threads of the block and with the same lifetime as the block.
All threads have access to the same global memory.
The CUDA programming model assumes that the CUDA
threads execute on a physically separate device that operates
as a coprocessor to the host running the C program. This is
the case, for example, when the kernels execute on a GPU
and the rest of the C program executes on a CPU. This is
illustrated by the figure below.

 Fig 3. CUDA Programming Model

V. CUDA KERNEL

As stated in the earlier section, Kernels are C functions,

that, when called, are executed by different CUDA threads

in parallel. A kernel is defined using the __global__

declaration specifier. Each thread that executes the kernel is

given a unique thread ID that is accessible within the kernel

through the built-in threadIdx variable [9].

As an example, the following code adds two matrices A and

B of size NxN and stores the result into matrix C:

__global__ void MatAdd(char *A, char *B, char *C, int N){

 int i = blockIdx.x * blockDim.x + threadIdx.x;

 int j = blockIdx.y * blockDim.y + threadIdx.y;

 if (i < N && j < N)

 *(C + i*N + j) = *(A + i*N + j) + *(B + i*N + j);

}

int main(){

 ...

 dim3 threadsPerBlock(48, 4);

 dim3

 numOfBlocks(N/threadsPerBlock.x,N/threadsPerBlock.y);

 //Invoking the kernel

 MatAdd << <numOfBlocks, threadsPerBlock >> >(pA,

pB, pC, N);

 ...

}

In the above example we have performed matrix addition in
the kernel “MatAdd.” We have defined the number of
threads per block using the variable “threadsPerBlock,”
which is of type dim3. In this particular example there are
48x4 threads per block. The total number of blocks have
been defined using the variable “numOfBlocks” which is of
type dim3. In this particular example, “threadsPerBlock.x” is
48, and “threadsPerBlock.y” is 4. Therefore the total
number of blocks is N/48 times N/4. Here we have used
dim3 which is an integer vector type that is used to specify
dimensions. The syntax for kernel launch is,
“function name” << <”number of blocks”, “number of
threads per block” >> >(“arguments to be sent to the
kernel”).

The first thing to notice about the kernel is the __global__

keyword. This simply indicates that this function may be

called by either the CPU or the GPU. Another interesting

thing to notice is, how each thread figures out exactly which

data element it is supposed to operate on. Each thread runs

the same code, so the only way to differentiate themselves

from the other threads is to use the threadIdx, and the

blockIdx variables.

VI. DESIGN AND IMPLEMENTATION

As stated in the second section, Strassen’s Algorithm is a

recursive algorithm. A step by step implementation of

Strassen’s Algorithm is given below:
Strassen(A, B, N)

1. Compute A11, B11, . . ., A22, B22 by splitting A and B

into 4 equal parts

2. If N>Recursion_Limit

 M1 ← Strassen((A11 + A22), (B11 + B22), N/2)

 Else

 Multiply((A11 + A22), (B11 + B22), N)

3. If N>Recursion_Limit

 M2 ← Strassen((A21 + A22), B11 , N/2)

 Else

 Multiply((A21 + A22), B11, N)

4. If N>Recursion_Limit

 M3 ← Strassen(A11, (B12 - B22), N/2)

 Else

 Multiply(A11, (B12 – B22), N)

5. If N>Recursion_Limit

 M4 ← Strassen(A22, (B21 − B11), N/2)

 Else

 Multiply(A22, (B21 − B11), N)

6. If N>Recursion_Limit

 M5 ← Strassen((A11 + A12), B22, N/2)

 Else

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 101

 Multiply((A11 + A12), B22, N)

7. If N>Recursion_Limit

 M6 ← Strassen((A21 − A11), (B11 + B12), N/2)

 Else

 Multiply((A21 − A11), (B11 + B12), N)

8. If N>Recursion_Limit

 M7 ← Strassen((A12 − A22), (B21 + B22), N/2)

 Else

 Multiply((A12 − A22), (B21 + B22), N)

9. C11 ← M1 + M4 − M5 + M7

10. C12 ← M3 + M5

11. C21 ← M2 + M4

12. C22 ← M1 - M2 + M3 + M6

13. Output C

In the above algorithm we have multiplied matrices using
Strassen’s algorithm, but only to a certain limit. Once the
size of the matrices becomes less than “Recursion_Limit,”
we use the classic method of matrix multiplication to
multiply them. This is because, we have found from our
experiments that below a certain size, there is negligible
difference between the classic method of matrix
multiplication and matrix multiplication using Strassen’s
algorithm.

For executing the program on the GPU, we had to write

CUDA kernels for addition, subtraction and multiplication.

The addition and subtraction kernels are based on the

example given in the previous section, “CUDA Kernel.” The

multiplication kernel is based on the CUDA sample of

matrix multiplication provided in the CUDA Toolkit.

VII. EXPERIMENTAL SETUP

While conducting experiments, we have used a workstation

equipped with Intel Xeon processor. The workstation (HP

Z440) is equipped with 16 GB RAM. The specifications of

the GPU have already been stated in the section, “GPU and

CUDA.”

We have used Fedora 24 and CUDA Toolkit 8.0. The
CUDA Toolkit includes a compiler for Nvidia GPUs, math
libraries, and tools for debugging and optimizing the
performance of applications. It also has programming
guides, user manuals, and other relevant documentation. The
programs containing CUDA kernels are compiled with the
help of the nvcc. CUDA codes run on both CPU and GPU.
Nvcc separates these two parts and sends the host code (the
part of the code which is to be run on the CPU) to a C
compiler. In our experimental setup, the C compiler is gcc
5.4.0. The device code (the part of the code which is to be
run on the GPU) is sent to the GPU. The device code is
further compiled by nvcc.

Fig 4. Flowchart illustrating the function of nvcc

VIII. EXPERIMENTAL RESULTS

We have taken 4 sets of readings for our experiment. The 4

sets being – matrix multiplication on the CPU, Strassen’s

algorithm on the CPU, matrix multiplication on the GPU

and Strassen’s algorithm on the GPU. In this section we will

list those readings and compare between the different sets of

data and come to a logical conclusion.

We have used matrices of size 500x500, 1000x1000,
2000x2000, 4000x4000, 8000x8000 and 16000x16000 for
all 4 sets of readings. The matrices are of type char. Thus
each element of the matrix occupies a space of 1 byte

A. CPU

Table 1. Classic Method of Matrix Multiplication on the
CPU

Size Time(in seconds) Experimental

Multiplier

500x500 0.45

1000x1000 3.3 7.3

2000x2000 26.4 8.0

4000x4000 490.1 18.6

8000x8000 4178.6 8.5

16000x16000 36694.6 8.8

Experimental Multiplier = (Time taken for matrix of size
nxn)/(Time taken for matrix of size (n/2)x(n/2))

The complexity of classic matrix multiplication is O(n

3
),

where nxn is the size of the matrix. If we double the size of
the matrix, then the complexity becomes O((2n)

3
). As a

result the time taken by the matrix of size 2nx2n increases
by a factor of ((2n)

3
/ n

3
) . This yields a result of 8. Thus, for

an ideal case, the value of the multiplier will be 8.

As we can see, for matrices of size 1000x1000 and
2000x2000, the multiplier is near to 8, if not exactly 8.
Considering there are 2 input matrices and 1 output matrix,
each of equal size; for 1000x1000 the total size of three

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 102

matrices is 3 MB. For 2000x2000 the total size of three
matrices is 12 MB. We have calculated the size of each
matrix by multiplying the space occupied by each element of
the matrix(1 byte) with the number of elements of the
matrix. Since 3 MB and 12 MB are both less than the total
cache memory size of the CPU, the matrices can be stored
in the cache. So there will always be a cache hit and data
transfer will be much faster. Now for matrices of size
4000x4000, the total size of 3 matrices is 48 MB. This
exceeds the capacity of the cache memory. Hence, the
matrices have to be stored on the external memory, which is
the RAM. So there always be a cache miss. Therefore data
transfer on the external memory will always take more time.
That is why the multiplier increases drastically for matrices
of size 4000x4000. Thereon, all matrices have to be stored
on the external memory. That is why, after 4000x4000 the
multiplier once again shows values close to 8, if not exactly
8.
There is also an explanation as to why the value of the
multiplier does not come exactly as 8. Since we are running
the program on an OS with many applications running in the
background, the CPU is unable to devote it’s full power to
executing the program. This is why the multiplier is varying
a bit. For some cases, the applications in the background
may not be consuming much resources, or in other cases it
might be consuming a lot of resources. Taking multiple
readings, and calculating their average is the best way to
eliminate this inconsistency, and that is what we have done
while taking these readings.

Table 2. Matrix Multiplication using Strassen’s Algorithm
on the CPU

Size Time(in

seconds)

Experimental

Multiplier

Recursion

Limit

500x500 0.4 125

1000x1000 2.8 7.0 125

2000x2000 19.6 7.0 125

4000x4000 137.3 7.0 125

8000x8000 963.2 7.0 125

16000x16000 6749.0 7.0 125

Experimental Multiplier = (Time taken for matrix of size
nxn)/(Time taken for matrix of size (n/2)x(n/2))
The complexity of matrix multiplication using Strassen’s
algorithm is O(n

2.81
), where nxn is the size of the matrix. If

we double the size of the matrix, then the complexity
becomes O((2n)

2.81
). As a result the time taken by the matrix

of size 2nx2n increases by a factor of ((2n)
2.81

/ n
2.81

) . This
yields a result of approximately 7. Thus, for an ideal case,
the value of the multiplier will be approximately 7.

Now for matrix multiplication using Strassen’s algorithm we
can see that the multiplier is uniform. There is no drastic
increase in the multiplier for matrices of size 4000x4000.

This is because we are using recursion. We are constantly
splitting the matrices until we get matrices that reach the
recursion limit. Only then do we multiply the matrices using
the classic method of multiplication. Since the recursion
limit is 125, that means that when we get matrices of size
less than or equal to 125x125, only then do we multiply the
matrices using the classic method of multiplication. Matrices
of this size can easily fit inside the cache memory of the
CPU, thus ensuring fast data transfer. That is why there is no
drastic change in the multiplier, as matrix size increases
from 500 onwards.

Now we will compare between the classic method of matrix
multiplication and matrix multiplication using Strassen’s
algorithm. Matrix multiplication using Strassen’s algorithm,
as expected takes less time than the classic method of matrix
multiplication. We have drawn further inferences from the
following table
Table 3. Comparison between Strassen’s Algorithm and
Classic Method of Matrix Multiplication on the CPU

Size Time for

Strassen(in

sec)

Time for Classic

Method

(in sec)

Strassen

Improvemen

t

500x500 0.4 0.45 1.13

1000x1000 2.8 3.3 1.18

2000x2000 19.6 26.4 1.35

4000x4000 137.3 490.1 3.57

8000x8000 963.2 4178.6 4.34

16000x16000 6749.0 36694.6 5.44

Strassen Improvement = (Time for Classic Method)/
 (Time for Strassen)
Thus we can see as the matrices increase in size, the
improvement in the Strassen’s algorithm increases. Thus we
can say that, Strassen’s algorithm is effective for matrices of
large size [4].

B. GPU

Table 4. Classic Method of Matrix Multiplication on the
GPU

Size Time(in seconds) Experimental

Multiplier

500x500 0.005

1000x1000 0.040 8.0

2000x2000 0.44 11.0

4000x4000 3.32 7.5

8000x8000 26.72 8.0

16000x16000 224.77 8.4

Experimental Multiplier = (Time taken for matrix of size
nxn)/(Time taken for matrix of size (n/2)x(n/2))

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 103

As we can see, for the classic method of matrix
multiplication on the GPU, the multiplier is pretty much
uniform. However, for smaller sizes, the computation time
may not be accurate. This is because, the computation time
itself is quite small. Compared to that small computation
time, the kernel launch overhead is quite significant. Thus
the timing for small matrices is not accurate enough. But for
large matrices, since the kernel launch overhead is negligible
when compared to the computation time, the timing for large
matrices is quite accurate.

Table 5. Matrix Multiplication using Strassen’s Algorithm
on the GPU

Size Time(in

seconds)

Experimental

Multiplier

Recursion

Limit

500x500 0.2 500

1000x1000 0.42 2.1 1000

2000x2000 0.56 1.3 1000

4000x4000 2.83 5.0 2000

8000x8000 20.33 7.1 2000

16000x16000 147.12 7.2 2000

Experimental Multiplier = (Time taken for matrix of size
nxn)/(Time taken for matrix of size (n/2)x(n/2))

As we can see from the table, as the size increases, the
experimental multiplier inches closer to the theoretical
multiplier. This reinforces the fact that, Strassen’s algorithm
is more beneficial and viable for matrices of large size.
When the size of the matrices is comparatively small, the
kernel launch overhead is quite significant. Also, in
Strassen’s algorithm we have multiple kernel launches.
Every time recursion is performed, multiple kernels are
launched. This increases the computation time, thus yielding
inconsistent results for smaller matrices.

The recursion limit should always be less than the size of the
matrix. But for matrices of size 500x500 and 1000x1000 we
can see that the recursion limit is the same as the size of the
matrix. This is because, for matrices of small size, the kernel
launch overhead is quite large compared to the computation
time. Performing recursion multiple times will result in
multiple kernel launches, which will increase the
computation time.

Table 6. Comparison between Strassen’s Algorithm and

Classic Method of Matrix Multiplication on the GPU

Size Time

for

Strassen

(in s)

Time for Classic

Method

(in s)

Strassen

Improvement

500x500 0.2 0.005 0.025

1000x1000 0.42 0.040 0.09

2000x2000 0.56 0.44 0.79

4000x4000 2.83 3.32 1.17

8000x8000 20.33 26.72 1.31

16000x16000 147.12 224.77 1.53

Strassen Improvement = (Time for Classic Method)/
 (Time for Strassen)

As we can see from the above table, the Strassen
Improvement is quite less for matrices of small size. But as
the matrix size increases, the Strassen Improvement
increases. This reinforces our belief that Strassen’s algorithm
works best for large matrices.

C. CPU & GPU
Table 7. Comparison between classic method of matrix
multiplication on CPU and GPU

Size CPU(in

seconds)

GPU(in

seconds)

Speedup

500x500 0.45 0.005 90

1000x1000 3.3 0.040 82.5

2000x2000 26.4 0.44 60

4000x4000 490.1 3.32 147.6

8000x8000 4178.6 26.72 156.4

16000x16000 36694.6 224.77 163.3

Speedup = CPU/GPU

For matrix multiplication on the CPU, we noticed that for

matrices of size 4000x4000 onwards, the speedup has

increased a lot because of the cache miss effect in the CPU.

As we can see from the table, performing matrix

multiplication on the GPU yields extremely favorable

results. The above table has been plotted as a graph in the

figure below.

Fig 5. Comparison between classic method of matrix

multiplication on CPU and GPU

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 104

Table 8. Comparison between matrix multiplication using
Strassen’s algorithm on CPU and GPU

Size CPU(in

seconds)

GPU(in

seconds)

Speedup

500x500 0.4 0.2 2

1000x1000 2.8 0.42 6.7

2000x2000 19.6 0.56 35

4000x4000 137.3 2.83 48.5

8000x8000 963.2 20.33 47.4

16000x16000 6749.0 147.12 45.9

Speedup = CPU/GPU

For matrix multiplication using Strassen’s algorithm, we can

see that the speedup increases gradually, thus again proving

the fact that Strassen’s algorithm is more beneficial for

matrices of large sizes. As to why we did not take readings

beyond 16000x16000. The GPU has a total memory of 2

GB. In Strassen’s algorithm there are three main matrices

and multiple sub-matrices. If we go beyond 16000x16000,

the cumulative space taken up by all the matrices exceeds 2

GB. The above table has been plotted as a graph in the figure

below.

Fig 6. Comparison between matrix multiplication using
Strassen’s algorithm on CPU and GPU

IX. CONCLUSION

We can quite safely come to the conclusion that
implementing matrix multiplication on the GPU is always
faster than CPU irrespective of the algorithm[11]. We have
seen that Strassen’s algorithm gives better results when
matrix size is larger, both on the CPU and the GPU. As long
as the recursion limit is used in an intelligent manner,
positive results can be garnered from implementing
Strassen’s algorithm.

X. REFERENCES

[1] Francois Le Gall, “Powers of Tensors and Fast Matrix

Multiplication,” Cornell University Library,

arXiv:1401.7714 [cs.DS], 2014.

[2] Wikipedia, Strassen Algorithm,

 https://en.wikipedia.org/wiki/Strassen_algorithm.
[3] Junjie Li, Sanjay Ranka, Sartaj Sahni, “Strassen’s Matrix

Multiplication on GPUs,” 2011 IEEE 17th International
Conference on Parallel and Distributed Systems(ICPADS),
pp. 157-164, 2011.

[4] C. P. Patidar and Meena Sharma, "Histogram Computations
on GPUs Kernel using Global and Shared Memory
Atomics", ISROSET-International Journal of Scientific
Research in Computer Science and Engineering, Volume-
01, Issue-04, Page No (1-6), Aug 2013

[5] Pujianto Yugopuspito, Sutrisno, Robertus Hudi, “Breaking
through memory limitation in GPU parallel processing
using Strassen Algorithm,” 2013 International Conference
on Computer, Control, Informatics and Its
Applications(IC3INA), pp. 201-205, 2013.

[6] Ayaz ul Hasan Khan, Mayez Al-Mouhamed, Allam Fatayer,
“Optimizing strassen matrix multiply on GPUs”, 2015 16th
IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pp. 1-6, 2015.

[7] V. Strassen, “Gaussian elimination is not optimal,”
Numerische Mathematik, Vol. 13, No. 4, pp. 354-356,
August 1969.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Livest, Clifford Stein, Introduction to Algorithms, Second
Edition. MIT Press and McGraw-Hill, 2001. Chapter 28:
Section 28.2: Strassen’s algorithm for matrix multiplication,
pp. 735-741.

[9] CUDA C Programming Guide,

 https://docs.nvidia.com/cuda/cuda-c-programming-guide

[10] John Nickolls, “GPU parallel computing architecture

[11] Fazlul Kader Murshed Nawaz, Arnab Chattopadhyay,

Kirthan G J, Girish D Mane, Rohith N Savanth,

“Comparison of Open MP and CUDA”, International

Journal of Computer Science and Engineering E-ISSN:

2347-2693, Vol.2, Issue-12, pp.38-41, 2014.

AUTHORS’ PROFILE

Utsab Ray is currently pursuing his B.Tech

degree in Information Technology from

Institute of Engineering & Management,

Salt Lake, Kolkata. His research interests

include High Performance Computing and

Distributed Systems. Utsab Ray may be

reached at utsab_ray@yahoo.co.in

Tapan Kumar Hazra completed his M.E

degree from Jadavpur University, Kolkata,

West Bengal, India. Since from 2003, he is

working as a faculty member of

Department of Information Technology at

Institute of Engineering & Management,

 International Journal of Computer Sciences and Engineering Vol.-4(10), Oct 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 105

Salt Lake, Kolkata, West Bengal, India.

His research interest include Design and Analysis of

Algorithms, Image Processing, Natural Language

Processing, Sentiment Analysis, Machine learning,

Cryptography. Tapan Kumar Hazra may be reached at

tapankumar.hazra@iemcal.com

Utpal Kumar Ray received the degree

of B.E. in Electronics and

Telecommunication Engineering in

1984 from Jadavpur University, India

and the degree of M.Tech in Elecrical

Engineering from Indian Institute of

Technology, Kanpur in 1986

He was employed in different capacities

in WIPRO INFOTECH LTD., Bangalore, India; Client:

TANDEM COMPUTERS, Austin, Texas, USA; HCL

America, Sunnyvale, California, USA, Client: HEWLETT

PACKARD, Cupertino, California, USA; HCL Consulting,

Gurgaon, India; RAVEL SOFTWARE INC., San Jose,

California, USA; STRATUS COMPUTERS, San Jose,

California, USA; AUSPEX SYSTEMS, Santa Clara,

California, USA and SUN MICROSYSTEMS, Menlo Park,

California, USA for varying periods of duration from 1986

to 2002. From 2003 he is working as Assistant Professor in

the Department of Information Technology, Jadavpur

University, India. He has published 17 papers in different

conferences and journals. He has also published a book

titled “Software Transactional Memory: An Alternative to

Locks” by LAP LAMBERT ACADEMIC PUBLISHING,

GERMANY in 2012 co-authored with Ryan Saptarshi Ray.

Utpal Kumar Ray may be reached at

utpal_ray@yahoo.com

