

 © 2019, IJCSE All Rights Reserved 792

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-4, April 2019 E-ISSN: 2347-2693

Apache Hadoop: A Guide for Cluster Configuration & Testing

Ankit Shah

1*
, Mamta Padole

2

1
Dept. of Information Technology, Shankersinh Vaghela Bapu Institute of Technology, Gandhinagar, India

2
 Dept. of Computer Science and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India

*Corresponding Author: shah_ankit101@yahoo.co.in , Tel.: +91-9824584855

DOI: https://doi.org/10.26438/ijcse/v7i4.792796 | Available online at: www.ijcseonline.org

Accepted: 19/Apr/2019, Published: 30/Apr/2019

Abstract— For Big Data processing, analyzing and storing Apache Hadoop is widely adopted as a framework. Hadoop

facilitates processing through MapReduce, analyzing using Apache Spark and storage using the Hadoop Distributed File

System (HDFS). Hadoop is popular due to its wide applicability and easy to run on commodity hardware functionality. But the

installation of Hadoop on single and distributed cluster always remains a headache for the new developers and researchers. In

this paper, we present the step by step process to run Hadoop on a single node and also explain how it can be used as a

distributed cluster. We have implemented and tested the Hadoop framework using single node and cluster using ten (10) nodes.

We have also explained primary keywords to understand the concept of Hadoop.

Keywords—Apache Hadoop, Hadoop Cluster Configuration, Hadoop Testing, Hadoop Implementation

I. INTRODUCTION

Every day and year pass we are generating data. The data

which is generated, it is not just a data but the data which is

beyond our expectation and imagination. Knowingly or

unknowingly we are part of these Big Data. More data

doesn‟t just let us see more, it allows us to see new, better

and different. The data has gone from a stock to a flow, from

stationary and static to fluid and dynamic. So Big Data

processing is not just a challenge but it also opens a new

door for technology and betterment of humanity.

The Big Data is an all-encompassing term for any collection

of data sets so large and complex that it becomes difficult to

process using on-hand data management tools or traditional

data processing applications [1]. Apache Hadoop [2] is the

most suitable open source ecosystem of distributed

processing of Big Data. Google‟s MapReduce [3] is the best-

proposed programming framework for Big Data processing

solution under the umbrella of Hadoop. Hadoop is not just

software but it is a framework of tools for processing and

analyzing Big Data.

Applications involving Big Data need enormous memory

space to load the data and high processing power to execute

them. Individually, the traditional computing systems are not

sufficient to execute these big data applications but,

cumulatively they can be used to meet the needs. This

cumulative power for processing Big Data Applications can

be achieved by using Distributed Systems with Map-Reduce

model under the Apache Hadoop framework. Mere

implementation of the application on Distributed Systems

may not make optimal use of available resources [4].

In this paper, we try to provide complete configuration

information so that any layman can just follow the steps of

configuration for the Hadoop cluster setup.

Rest of the paper is organized as follows, Section I contains

the introduction of Big Data and the need for Hadoop,

Section II describes the Hadoop Ecosystem, Section III gives

configuration settings of Hadoop single node setup, Section

IV contains the essential steps of the Hadoop cluster setup,

and Section V concludes research work with future

directions.

II. HADOOP ECOSYSTEM

Hadoop is open source software comprising of framework of

tools. These tools provide support for executing big data

applications. Hadoop has very simple architecture. Hadoop

2.0 version primarily consists of three components as shown

in fig.1:

1. HDFS (Hadoop Distributed File System) [5]: HDFS

supports distributed storage on cluster nodes. HDFS

is the core component of Hadoop which deals for

data storage and block placement.

2. YARN (Yet Another Resource Negotiator) [6]:

YARN is basically a resource manager. The task of

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 793

YARN is to manage the resources of the cluster and

schedule the jobs.

3. MapReduce [3]: MapReduce the programming

framework to execute parallel tasks on cluster

nodes.

Figure 1. Hadoop Core Components

III. HADOOP SINGLE NODE SETUP

For Hadoop setup we use Hadoop 2.7.2 and ubuntu 14.04

version.

Required Software

1. JavaTM 1.5 + versions, preferably from Sun, must be

installed

2. ssh must be installed and sshd must be running to use the

Hadoop scripts that manage remote Hadoop daemons. (By

default part of Linux system)

3. Hadoop: http://hadoop.apache.org/releases.html (version

2.7.2 (binary) – Size 202 MB)

Steps for Installation [For version: Jdk- 1.7, Hadoop-

2.7.2]

1. Install Linux/Ubuntu (If using Windows, use Vmware

player and Ubuntu image)

2. First, update the package index & for that command is

sudo apt-get update

sudo apt-get install ssh

sudo gedit /etc/ssh/sshd_config

3. Install Java

Hadoop framework required the jave environment. You can

check the version available to your system using below

command.

$ java –version

Figure 2. Java version installed

If JAVA not installed you can install by following

commands:

 sudo apt-get install default-jdk

 or

 sudo apt-get install openjdk-7-jre

4. Hadoop Version 2.7.2 Download

For our configuration we have used 2.7.2. User can use the

latest version. Most of the parameters are unchanged in

newer version too.

$wget

http://www.apache.org/dyn/closer.cgi/hadoop/common/ha

doop-2.7.2/hadoop-2.7.2.tar.gz
But the file size is 202 MB so it's preferable to download it

using some downloader and copy the hadoop-2.7.2-

src.tar.gz file in your home folder.

5. Extract the hadoop-2.7.2-src.tar.gz directory manually

or using command:

tar -xvf hadoop-2.7.2.tar.gz

Figure 3. Extract Hadoop 2.7.2

This will create folder (directory) named: hadoop-2.7.2

6. Cross check hadoop directory

Figure 4. Hadoop 2.7.2 directory

7. Create Hadoop User for common access

It is important to create same username on all machines to

avoid multiple password entries.

$sudo adduser hduser

$sudo adduser hduser sudo

http://hadoop.apache.org/releases.html

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 794

8. Move Hadoop to usr/local directory

$sudo mv hadoop-2.7.2 /usr/local/

9. Move Hadoop to usr/local directory

sudo gedit /etc/hosts

10. Update the „.bashrc‟ file to add important Apache

Hadoop environment variables for user.

a) Change directory to home.

$ cd

b) Edit the file

$ sudo gedit .bashrc (this command will open one file)

----Set Hadoop environment Variables - @ the end of File----

export HADOOP_HOME=/usr/local/hadoop-2.7.2

export HADOOP_CONF_DIR=/usr/local/hadoop-

2.7.2/etc/hadoop

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386

export PATH=$PATH:/$HADOOP_HOME/bin

export PATH=$PATH:/$HADOOP_HOME/sbin

export

HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HO

ME/lib/native

export HADOOP_OPTS="-

Djava.library.path=$HADOOP_HOME/lib"

c) Source the .bashrc file to set the hadoop environment

variables without having to invoke a new shell:

$. ~/.bashrc

11. Setup the Hadoop Cluster

11.1 Configure JAVA_HOME

Configure JAVA_HOME in „hadoop-env.sh‟. This file

specifies environment variables that affect the JDK used by

Apache Hadoop 2.0 daemons started by the Hadoop start-up

scripts:

$cd $HADOOP_CONF_DIR

$sudo gedit hadoop-env.sh

Update the JAVA_HOME to:

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386

11.2 Configure the Default File system

The ‟core-site.xml‟ file contains the configuration settings

for Apache Hadoop Core such as I/O settings that are

common to HDFS, YARN and MapReduce. Configure

default files system

(Parameter: fs.default.name) used by clients in core-site.xml

$cd $HADOOP_CONF_DIR

$sudo gedit core-site.xml

Add the following line in between the configuration tag:

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://localhost:9000</value>

 </property>

11.3 Configure MapReduce framework

This file contains the configuration settings for MapReduce.

Configure mapred-site.xml and specify framework details.

$sudo gedit mapred-site.xml

Add the following line in between the configuration tag:

 <configuration>

 <property>

 <name>mapred.job.tracker</name>

 <value>localhost:54311</value>

 </property>

 </configuration>

11.4 Create NameNode and DataNode directory

Create DataNode and NameNode directories to store HDFS

data.

$sudo mkdir -p

/usr/local/hadoop_tmp/hdfs/namenode

$sudo mkdir -p

/usr/local/hadoop_tmp/hdfs/datanode

$sudo chown -R hduser /usr/local/hadoop_tmp

11.5 Configure the HDFS

HDFS configuration helps to create number of replicas for

the data. It also runs daemons in NameNode and DataNode

for HDFS configurations. Here hdfs-site.xml is required to

setup which is fully customizable. So we can have used

replication factor as 1. Usually default is 3.

$sudo gedit hdfs-site.xml

Add the following line in between the configuration tag:

<property>

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 795

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/usr/local/hadoop_tmp/hdfs/namenode

</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value> file:/usr/local/hadoop_tmp/hdfs/datanode

</value>

</property>

11.6 Start the DFS services

Once all parameters are set we are ready to go. But before

that it is required to format the HDFS namenode for enabling

to store and manage HDFS directories along with default OS

file system. Command for formatting the HDFS namenode is

give below:

To format the file-system, run the command:

$hdfs namenode –format

(To execute command: Go to Hadoop folder > Go to bin

folder)

Or

$hadoop namenode –format (deprecated from latest

Hadoop version)

$start-all.sh

http://localhost:50070/

$stop-all.sh

IV. HADOOP CLUSTER SETUP

$sudo gedit /etc/hosts

Add hostnames with IP address

$cd $HADOOP_CONF_DIR

$sudo gedit hdfs-site.xml

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/usr/local/hadoop_tmp/hdfs/namenode

</value>

</property>

$cd $HADOOP_CONF_DIR

$sudo gedit core-site.xml

<property>

<name>fs.defaultFS</name>

<value>hdfs://hadoopmaster:9000</value>

</property>

$sudo gedit mapred-site.xml

<configuration>

<property>

<name>mapreduce.job.tracker</name>

<value>hadoopmaster:54311</value>

</property>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

$sudo gedit yarn-site.xml

<property>

<name>yarn.resourcemanager.hostname</name>

<value>hadoopmaster</value>

<description>The hostname of the RM.</description>

</property>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

<description>shuffle service that needs to be set for Map

Reduce to run </description>

</property>

<property>

<name>yarn.resourcemanager.scheduler.address

</name>

 <value>hadoopmaster:8030</value>

</property>

<property>

<name>yarn.resourcemanager.address</name>

<value>hadoopmaster:8032</value>

</property>

<property>

<name>yarn.resourcemanager.webapp.address</name>

<value>hadoopmaster:8088</value>

</property>

<property>

<name>yarn.resourcemanager.resourcetracker.address

</name>

<value>hadoopmaster:8031</value>

</property>

$sudo gedit /usr/local/hadoop-2.7.2/etc/hadoop/slaves

Now create clone of Master

 International Journal of Computer Sciences and Engineering Vol.7(4), Apr 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 796

Master

$sudo gedit /usr/local/hadoop-2.7.2/etc/hadoop/masters

$sudo rm -r /usr/local/hadoop_tmp

$sudo mkdir /usr/local/hadoop_tmp

$sudo mkdir -p /usr/local/hadoop_tmp/hdfs/namenode

$sudo chown -R hduser /usr/local/hadoop_tmp

If required check for the chmod also

$sudo chmod 755 -R /usr/local/hadoop-2.7.2

$sudo chown -R hduser /usr/local/hadoop-2.7.2

$hdfs namenode -format

All Slaves

$cd $HADOOP_CONF_DIR

$sudo gedit hdfs-site.xml

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>file:/usr/local/hadoop_tmp/hdfs/datanode

</value>

</property>

$sudo rm -rf /usr/local/hadoop_tmp

$sudo mkdir -p /usr/local/hadoop_tmp

$sudo mkdir -p /usr/local/hadoop_tmp/hdfs/datanode

$sudo chown -R hduser /usr/local/hadoop_tmp (change

ownership)

$sudo chmod 755 -R /usr/local/hadoop-2.7.2 (check user

access)

$sudo chown -R hduser /usr/local/hadoop-2.7.2

$sudo reboot

Master

$sudo /etc/init.d/networking restart

$ssh-keygen -t rsa -P “”

$cat

$HOME/.ssh/id_rsa.pub>>$HOME/.ssh/authorized_keys

$ssh-copy-id -i ~/.ssh/id_rsa.pub hduser@slave1 (do it for all

slaves)

$ssh hadoopmaster

$ssh slave1 (should be able to login w/o password)

$start-all.sh

http://hadoopmaster:50070/

Figure 5. Hadoop 2.7.2 dashboard

V. CONCLUSION AND FUTURE SCOPE

In this paper, we give detailed steps to install Hadoop

standalone and distributed cluster. We try to provide all setup

parameters which are customized and the user can set it as per

the convenience. Moreover, this complete guide will help to

create a robust cluster setup for the homogeneous and

heterogeneous cluster. The future researcher can avail the

benefit of this setup configuration for their researches.

REFERENCES

[1] Forbes Welcome,

https://www.forbes.com/sites/gilpress/2014/09/03/12-big-data-

definitions-whats-yours/#487d104413ae (Access on March 30,

2019)

[2] Hadoop, http://hadoop.apache.org (Access on March 30, 2019)

[3] Dean, J. and Ghemawat, S., MapReduce: simplified data

processing on large clusters. Communications of the ACM, 51(1),

pp.107-113 (2008).
[4] Shah A., Padole M. (2019) Performance Analysis of Scheduling

Algorithms in Apache Hadoop. In: Shukla R., Agrawal J., Sharma

S., Singh Tomer G. (eds) Data, Engineering and Applications.

Springer, Singapore

[5] Shvachko, K., Kuang, H., Radia, S. and Chansler, R., 2010, May.

The hadoop distributed file system. In MSST (Vol. 10, pp. 1-10).

[6] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar,

M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S. and Saha,

B., (2013). Apache hadoop yarn: Yet another resource negotiator.

In Proceedings of the 4th annual Symposium on Cloud Computing

(p.5). ACM.

Authors Profile

Mr. Ankit Shah received his Bachelors in

Information & Technology Engineering in

2009. He received his Masters in Computer

Science & Engineering. Currently, he is

pursuing his PhD in the Computer Science

& Engineering from The Maharaja

Sayajirao University of Baroda, India. His research interests

include big data processing, distributed computing, and IoT.

He has 8 years of teaching experience.

Dr. Mamta Padole is PhD in Computer

Science & Engineering, and is currently

working as an Associate Professor in the

Department of Computer Science &

Engineering, The Maharaja Sayajirao

University of Baroda, India. She has vast

experience in teaching and research. Her research interests

include Distributed computing, Fog computing, IoT and

BioInformatics. She has over 20 years of teaching / industry

experience.

http://hadoop.apache.org/

