
 © 2018, IJCSE All Rights Reserved 831

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Comparative Study of Integrity Constraints, Storage and Profile

Management of Relational and Non-Relational Database using MongoDB

and Oracle

V.J. Dindoliwala

1*
, R.D. Morena

2

1
C. B. Patel Computer College, Bharthana, Vesu, Surat, India

2
Department of Computer Science, Veer Narmad South Gujarat University, Surat, India

*Corresponding Author: vaishali_1331@yahoo.co.in, Tel.: 98795 00031

Available online at: www.ijcseonline.org

Accepted: 24/Jul/2018, Published: 31/Jul/2018

Abstract-- In the last decade, there is a rapid development in web technologies, social media applications and mobile

applications which generates unstructured data. The way these applications deal with data has been changed extensively over

the last decade. These applications collect more data and more users are accessing these data concurrently than ever before.

Thus it is a big challenge for relational databases in terms of scalability and performance to handle these data which has given

boost to the initiation of various NoSQL databases. Among the several NoSQL databases, MongoDB is the most popular

document store database because of its sharding and aggregation framework coupled with document validations and efficient

data manipulation, fine-grained locking, replication facility, administration capabilities and so on. In this paper, we have

studied how integrity constraints, contents and resources are managed by MongoDB and also studied various features provided

by MongoDB and compared them with the widely used Oracle database.

Keywords-- Relational databases, Non-Relational Databases, Integrity Constraints, Relationships, Resources, Profile

I. INTRODUCTION

MongoDB, an open source document store NoSQL database,

is becoming more popular nowadays because of capability of

handling high volume of data, high performance, high

availability and automatic scaling. The high performance will

be achieved by means of indexes, embedded data models and

keys from embedded documents and arrays. High availability

is achieved through the replication facility known as replica

set which provides automatic failover facility. Automatic

scaling is provided through automatic sharding which

distributes data across a cluster of machines.

MongoDB uses a document-oriented data model which

follows JSON (JavaScript Object Notation) like documents

with loose structure. Documents may have hierarchical

structure and grouped into heterogeneous collections that are

stored into a database [1]. Like any relational databases,

MongoDB has also various security mechanisms like

authentication, authorization, database auditing and data

encryption [7]. MongoDB provides robustness, scalability and

flexibility which are not necessarily met by traditional

relational database systems. But there are still some features

like referential integrity, user profiles which are desirable in

MongoDB. Referential integrity constraints guarantee that

relationships between various data are preserved. For

example, it ensures that a course should exist before students

register in it. Such relationships are essential and have to be

maintained in any databases. This constraint also ensures that

no operations violate the integrity between various data [6].

Through resource and user profile management, we can

restrict users from performing operations that exceed

reasonable resource utilization. Oracle is the most popular

relational database system used around for ages while

MongoDB is comparatively new but it has been used by many

applications.

The aim of this paper is to study how various integrity

constraints like entity integrity, referential integrity and

domain integrity are supported by the MongoDB and how

resources, contents and profiles are managed by MongoDB

and also made comparison with Oracle which motivates us

towards finding the gaps in MongoDB and what further

features can be added in MongoDB to make it suitable for all

applications. The rest of the paper is organized as follows:

Section II describes the data storage mechanism of MongoDB

and Oracle. Section III is the literature review. Section IV

describes the management of integrity constraints, content,

resources and profile in MongoDB and also shows how they

will be managed in Oracle. Section V discusses the reasons

for not providing integrity constraint like referential integrity,

user profile or resource management in MongoDB and it also

gives the comparison of various features provided by

MongoDB with Oracle. Section VI concludes the paper.

II. MONGODB VS ORACLE DATA STORAGE

MECHANISM

mailto:vaishali_1331@yahoo.co.in

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 832

Every database in MongoDB has a single .ns file and several

data files. Each new data file will be double in size to avoid

the wastage of space on disk for small databases and it also

keeps large databases in mostly contiguous regions on disk.

Within its data files, each database is arranged into

namespaces which stores a specific collection’s data. The

documents and indexes for each collection have their own

namespace. Metadata for namespaces is stored in the .ns file

of the database. Each data file is made up of multiple extents

in which data, indexes and MongoDB generated metadata are

stored. The data and indexes for a collection will usually

spread across multiple extents and they contained in their own

set of extents. Whenever a new extent is required, MongoDB

will try to use available space within current data files. If no

space is found, MongoDB will create new data file [18].

While in Oracle, every database has one or more physical data

files which contain all the database data including table and

index data. And the logical units of database space allocation

include data blocks, extents, segments and tablespaces. The

Figure 1 and Figure 2 show the logical data storage structure

of MongoDB and Oracle respectively.

Figure 1. MongoDB Data Storage Structure

Figure 2. Oracle Data Storage Structure

In MongoDB, data are stored in the form of documents in a

binary representation called BSON (Binary JSON) which

extends the JSON representation to include additional types

such as integer, long, date and floating point. These BSON

documents contain one or more fields with one or more

values [2]. Documents are similar to the concept of rows in

Oracle. These documents are stored within the collection

which is similar to a table in Oracle and the collection itself is

stored in the database.

Figure 3. Document Structure in MongoDB

III. LITERATURE REVIEW

Much work has been done in comparing and determining the

differences in performance of relational databases and non-

relational databases. But, we have not seen any research work

done about the performance comparison in terms of integrity

constraints, resource or profile management in non-relational

databases like MongoDB.

In their survey paper [4], A. Boicea, F. Radulescu and L.

Gapin have compared MongoDB with the Oracle database.

According to their research, the integrity model used by

Oracle Database is ACID and MongoDB uses BASE.

MongoDB offers consistency, durability and conditional

atomicity. MongoDB doesn't offer integrity features such as

isolation, transactions, referential integrity and revision

control. They have suggested that if one requires a more

complex database with relations between tables and a fix

structure, one should stay with the classic Oracle Database.

In their paper [14], authors have discussed various types of

data stores available with NoSQL. They have discussed about

MongoDB focusing on CAP (Consistency, Availability and

Partition Tolerance) theorem. They have also discussed

MapReduce which can help in handling large volumes of

data. And they concluded that NoSQL databases provide great

opportunity where SQL databases are not useful.

K. Georgiev [5] has addressed several problems by using

foreign keys and some semantic relationships between

documents which are lying in the same collection or in

different collections. They have implemented a verification

approach which uses the MapReduce programming model in

order to detect incorrect references in document oriented

databases that may be caused by errors in the program code or

https://www.researchgate.net/scientific-contributions/2052113311_Florin_Radulescu
https://www.researchgate.net/scientific-contributions/2045820883_Laura_Ioana_Agapin

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 833

incomplete transactions. The proposed solution would only

report the existence of issues like duplicate primary keys,

references to non-existing primary keys without any

suggestions about the cause for the generation of inconsistent

records.

In their survey paper, Y. Li and S. Manoharan [17] have

investigated performance of some NoSQL and SQL

databases. They have compared CRUD operations on key-

value stores implemented by NoSQL and SQL. They have

concluded that for various NoSQL databases, the performance

of these operations varies. They have also concluded that

among the several NoSQL databases, MongoDB and

Couchbase are the fastest for read, write and delete

operations.

N. Jatana, S. Puri, M. Ahuja, I. Kathuria and D. Gosain [16]

have also studied relational and non-relational databases for

storing and retrieving huge amount of data and made

comparison among them based on basic features provided by

them. They have also discussed limitations of relational

databases such as lack of high availability, replication, big

data handling and faster update and discussed which type of

NoSQL database to use to overcome these limitations.

A. Nayak, A. Poriya and D. Poojary [15] have surveyed

various NoSQL databases based on data stores used and also

discussed when each data store can be used which includes

parameters like query language, availability, interface and

consistency. They have also made comparison of NoSQL

databases with relational databases in terms of advantages and

disadvantages of NoSQL databases over relational databases.

B. Jose, S. Abraham and Praveen Kumar V. S. [19] have done

performance analysis between MongoDB and MySQL with

large number of records by performing simple query which

includes only SELECT statement in MySQL and equivalent

in MongoDB. They have concluded that increasing the

number of records, the performance of MongoDB increases in

contrast with MySQL. If number of records is small, there is

not too much difference in the execution time taken by both

the databases.

IV. COMPARISON OF MANAGING INTEGRITY

CONSTRAINTS, CONTENTS AND RESOURCES IN MONGODB

WITH ORACLE

The integrity constraints are used to enforce business rules by

specifying conditions or relationships among the data. So that

any operation that modifies the database must satisfy the

corresponding rules without the need to perform any checking

within the application. The term integrity with respect to

databases includes both database structure integrity and

semantic data integrity. The goal of database structure

integrity is to ensure that each database object is created,

formatted and maintained properly. The semantic data

integrity refers to the data and relationships that need to be

maintained between different types of data. After storing data

in the database, it is important factor how efficiently and

quickly the database system retrieves data from the database.

Any database system provides options, procedures and

controlling mechanism for defining and assuring the semantic

integrity of the data stored within the databases. In big data

environment, management of resources and user profiles are

also a big challenge for managing various database resources

like a database, collections, documents, files, CPU, memory,

disk storage space etc. In the following sub sections, we have

studied how integrity constraints, contents, resources and

profiles are managed in MongoDB and also compare them

with Oracle.

A. Entity Integrity Constraint

The role of a primary key in Oracle is to uniquely identify

each record of the table. Similarly, in MongoDB, each

document in a collection has unique identifier known as “_id”

which will be treated as primary key for the document. User

can also assign its own value to the “_id” field which can

work as primary key. If user does not provide any value to the

“_id” field then the system generates the ObjectId as the

“_id”. This ObjectId is the 12 bytes BSON type where the

first 4 bytes represents the time in seconds since the UNIX

epoch, the next 3 bytes represents the machine identifier, the

next 2 bytes represents the process id and the last 3 bytes

represents a random counter value. This ObjectId is generated

while inserting the document in the database collection. In

Oracle, one can change the value of primary key field which

is not true with the “_id” field of MongoDB document. If one

wants to change the “_id” field value of a document, one has

to save the same document using a new “_id” and then one

has to remove the old document.

B. Referential Integrity Constraint

In Oracle, the referential integrity constraint is maintained by

defining a foreign key in the table which enforces the

relationship between the two tables. One advantage of

MongoDB is that all the data are present everywhere you

need it and you can still pull the whole activity stream back as

a single document. MongoDB lacks relations particularly the

foreign key among the documents. If one wants to maintain

relations among the documents, one has to maintain by

building application level code. Still one can manage relations

among the documents either using embedded document in a

single document or using the referencing in MongoDB.

1) Embedded document approach: It provides strong

association among documents. Through embedded approach,

one can set one-to-one or one-to-many relationships among

the documents [9]. Here, the related documents are going to

be stored in a single document. So that using the single read,

one can get all information related to particular document.

The whole document will be persisted in the same collection

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 834

so, the read operation results in better performance as

compared to relational databases because we do not require

any join operation at all [10, 11]. This approach is generally

used when a limited amount of information is going to be

stored in an embedded document [12]. The problem with this

approach is that, it increases the in-memory requirements.

Also it may happen that some information is going to be

repeated in all embedded documents which utilize more

storage space which may lead to data redundancy and data

inconsistency. If the data to be embedded is expected to grow

larger in size, it is better to use referencing (Linking)

approach to avoid the document becoming too large and to

avoid the duplication of data.

2) Referencing approach: In Oracle, referencing among

records is done by setting foreign keys in the table. In

MongoDB, the referencing approach allows saving of “_id”

field of one document in the related document as a reference.

The referencing documents may be in the same collection or

in a different collection. Referencing enables normalization of

data and can give more flexibility than embedding approach.

But in MongoDB, there is no mechanism to maintain

relationships. The relations and their corresponding

operations have to be taken care manually that is through the

application code as no foreign key constraints and rules apply.

There is no CascadeDelete mechanism which is there in

Oracle. As compared to embedded approach, referencing

provides weak association among documents. Also, in

MongoDB, no joins are there. So to access referenced

document, one has to first fetch “_id” field from the document

and then one has to write second query to return the

referenced data which takes additional round trip to the server

which affects the performance as it requires multiple reads

from multiple physical locations [9]. There is also a $lookup

functionality for performing a left outer join to an unsharded

collection in the same database to filter in documents from the

joined collection for processing.

C. Domain Integrity Constraint

Domain integrity confirms that the column of the table must

satisfy certain rules. So that performing any modification on

the column value will not make database inconsistent. Oracle

provides various domain integrity constraints like data types,

null, not null, unique, check constraint and default value for a

column of a table. MongoDB also supports a feature called

document validation that can be used to enforce some

validation rules on the documents structure inside a particular

collection. These validation rules will be checked when a

document is going to be inserted or updated within a

collection. One can set the validation rules while creating the

collection using the db.createCollection() with the validator

option. If the validation rule is violated, an error or warning

will be generated depending upon the validationAction

option. Using these validation rules, one can define various

domain constraints like data types, null constraint, check

constraint, data ranges, requirement of mandatory fields etc.

for the fields of a document [11, 12]. One can also create

index on the document’s fields through which one can

achieve unique constraint for the document’s field [2]. By

default, MongoDB creates an index for the primary key of the

document for faster access.

D. Resource Management

The resource management provides granular control of

various database resources allocated to the users or the

applications. Efficient resource management helps

organizations to economize by associating servers. In Oracle,

the resource manager controls the database instances’ CPU

utilization, limits the number of database sessions that are

allowed to run concurrently within a group of users, manages

each database sessions, limits the degree of parallelism for

any database operation, automatically manages the workload

across all the instances of the database and so on [3].

Various database resources in MongoDB include collections,

single collection across databases, multiple databases across

databases and a cluster that are accessed by the database users

which can be controlled by creating roles in a database. We

can set all these resources by creating roles using

db.createRole() command. One can also give access

privileges to the specific collection using db.createRole(). For

example, if one wants to specify only “update” and “insert”

privileges on “Student” collection of the “College” database

then the command is as follows:

In MongoDB, to limit the size of the collection, there is a

mechanism called “capped collections” which are the fixed-

size circular collections which insert and retrieve documents

based on insertion order which can be imagined as circular

queues [13]. They offer high-throughput operations. When

there is no space in a collection, it automatically removes the

oldest document in the collection and makes space for new

documents. These collections preserve the insertion order. So,

queries do not need an index to return documents in insertion

order. Thus, no extra overhead is required for indexing which

provides higher insertion throughput. One can’t remove

documents from a capped collection. If you want to specify a

maximum number of documents for this collection, you can

do it by following way:

MongoDB also supports horizontal scaling through sharding

which divides the system dataset and load over the multiple

servers by adding additional servers to increase the capacity

as required. Each machine handles a subset of the overall

workload which increases efficiency as compared to a single

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 835

high speed server. MongoDB handles sharding natively on
a per-collection basis. The MongoDB partitions a collection

using a shard key which exists in every document of the

sharded collection. Using sharding, read and write across the

shards will be more efficient. It also increases the storage

capacity of the cluster by adding additional shards whenever

required. [13, 18]

MongoDB also provides a mechanism for limiting and

controlling the usage of system resources like threads, files

and network connections on a per-process and per-user basis.

The “ulimit” command refers to the per-user limitations for

various resources that prevents single user from using too

many system resources. The “ulimit” command will be

performed on MongoDB instances. Using “ulimit” command,

one can set various parameters like file size, cpu time, virtual

memory, memory size and open files.

MongoDB also provides a mechanism called GridFS. It is

useful when file system does not allow storing more than

limited number of files and also when query is made, no need

to load the whole file into memory. It stores file that exceeds

16MB. GridFS divides file in small chunks and stores across

different document. The maximum size of each document is

255k. Here, two collections are maintained for the file - files

and chunks. Files collection stores the metadata of the file and

chunks collection stores information of each part of file in

documents. [8]

E. Profile Management

Profile management is used to set the resource limit for the

users of the database. For example, it restricts users from

performing operations that exceed beyond the resource

utilization. Oracle handles profiles for the users to limit the

resource utilization by setting various profile parameters like

concurrent sessions per user, CPU time limit for a session,

session connect time, session idle time, number of data blocks

read per session etc. MongoDB database profiler is a tool to

collect server performance data. It is used for performance

analysis. It provides information about operations that are

executed on MongoDB instance. It collects fine grained data

about queries, write operations, cursors and other database

commands on a running server instance. The profiling can be

enabled on a per-database or per-server instance level. Apart

from this, there is no user profile management in MongoDB

as any user can use any amount of data at any given time.

F. Content Management

Once we have stored data within a database, we may want

faster retrieval of required data or want some more

functionality than just retrieving them. For better data

retrieval from the database, MongoDB uses various

techniques like indexing, aggregation framework.

Indexing is the mechanism through which the speed of data

retrieval can be improved. Conceptually, Indexing in

MongoDB and Oracle are same. In MongoDB, index is

defined at collection level and it can be created for a single

field or combination of fields of a document of a collection

while in Oracle, index is defined on table level and it can be

created for any column of the table. In MongoDB, if there are

no indexes in a database, to search a document from the

collection, the full collection will be scanned to find the

required document from the disk which is limited by server’s

disk subsystem I/O which will results in slow read operations

thus affects the performance [8]. But indexes increase the

read operation speed by avoiding unnecessary scanning of all

documents of a collection from the storage. Thus indexes also

minimize the cost of additional storage space.

The aggregation framework allows us to transform and

combine documents in a collection. It groups the values from

multiple documents together and can perform various

operations on the grouped data and returns a single value. For

doing this, MongoDB uses the aggregation pipeline and the

map-reduce function which has functionality as the group by

clause in Oracle.

V. DISCUSSION

NoSQL databases work on CAP theorem. According to this

theorem, all these features can’t be achieved at the same time.

As opposed to relational databases, NoSQL databases are also

ACID free. MongoDB follows the schema free structure for a

collection of documents in a database which makes the code

more error-prone, increases code duplication and easily

creates deeply-nested structures also. The fields in a

document can be added or deleted at any point of time. Users

of the system are completely free to define the contents of a

document at all times. They are not bound to a predefined set

of tables, columns and their types as in the case with the

relational databases like Oracle. This may be the one of the

reason for not defining referential integrity in NoSQL

databases like MongoDB. Documents can easily be modified

by adding or deleting fields without any need to restructure

the entire document. Also documents with old and new

structure can still exist in parallel in the database

collection. One can store whatever he wants irrespective of

any other documents.

Again in MongoDB, by using embedded document approach

for storing the related documents together, atomicity of

document is achieved which satisfies requirement of data

integrity in the database. One or more fields may be written in

a single operation including updates to multiple sub-

documents and array elements. So that any error occurs, entire

operation will be rolled back and thus clients get a consistent

view of the document.

As MongoDB is typically designed for the applications which

have millions of concurrent users who are accessing any

information continuously, resource and user profile

management is a critical part for it to handle with the penalty

http://www.mongodb.org/

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 836

of performance. With relational databases, user profile can be

handled as they are limited to a single server while distributed

databases can scale out across multiple servers. The Table 1

gives comparison of various features provided by the

MongoDB with Oracle.

Table 1. Features provided by MongoDB vs Oracle

Features Provided by MongoDB Oracle

Database Model Document Store Relational

Data Schema Schema free, Dynamic Predefined table structure and relationship

Query Language JSON query language SQL

Scaling Horizontally scalable Horizontally and Vertically scalable.

Entity Integrity Provided by means of “_id” field of a document. Once it is

set, one can’t change it.

Provided by means of primary key.

Referential Integrity Not provided. One can establish relationship between

documents by using embedded document or referencing.

But there is no mechanism for CascadeDelete. One has to

take care of it by writing application code.

Provided by defining foreign keys. Also

supports CascadeUpdate and CascadeDelete

mechanisms.

Domain Integrity Provided by means of document validation. Provided.

Joins Not provided. Provided.

Indexing Provided. Provided.

Resource and profile management Provided. But can’t be set on per user basis. Provided.

ACID properties Follows the CAP theorem. Partial support for ACID. Provided.

Consistency Eventual consistent Provided.

Normalization-Denormalization Embedded approach provides denormalization of data

while referencing provides normalization.

Provides normalization by dividing single table

into smaller tables to minimize data redundancy

and improves performance.

Aggregation framework Using aggregation pipeline and Map-reduce function. Using Group by

VI. CONCLUSION

Relational databases are widely used databases and they have

good performance when limited amount of data is there. But

to handle large amount of data, they will be insufficient.

Again, it is the job of the developer to decide which database

to use to meet the application requirements. MongoDB

provides data model flexibility, scalability, high performance

and availability. The horizontal scaling feature of MongoDB

significantly reduces the storage cost. It is the database that

enables developers to build applications faster and can give

ability to enhance their applications continuously. In

MongoDB, by adding some lacking features like integrity

constraints or profile management, one can use it in

applications with small amount of data.

REFERENCES

[1] P. Colombo, E. Ferrari, “Enhancing MongoDB with Purpose-

Based Access Control”, IEEE Transactions on Dependable and

Secure Computing, Vol. 14, Issue. 6, pp. 591 – 604, 2015.

[2] A MongoDB White Paper, “MongoDB Architecture Guide”,

MongoDB 3.2.

[3] An Oracle White Paper, “Effective Resource Management Using

Oracle Database Resource Manager”, 2011.

[4] A. Boicea, F. Radulescu, L. Gapin,“MongoDB vs Oracle --

Database Comparison”, Third International Conference on

Emerging Intelligent Data and Web Technologies (EIDWT), 2012,

doi: 10.1109/EIDWT.2012.32.

[5] K. Georgiev, “Referential Integrity and Dependencies between

Documents in a Document Oriented Database”, GSTF Journal on

Computing (JoC), Vol. 2, No. 4, pp. 24-28, 2013.

[6] H. Raja, ”Referential Integrity in Cloud NoSQL Databases”, A

thesis submitted to the Victoria University of Wellington, 2012.

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8103136
https://www.researchgate.net/scientific-contributions/2052113311_Florin_Radulescu
https://www.researchgate.net/scientific-contributions/2045820883_Laura_Ioana_Agapin
https://www.researchgate.net/conference-event/EIDWT_International-Conference-on-Emerging-Intelligent-Data-and-Web-Technologies_2012/8252
https://www.researchgate.net/conference-event/EIDWT_International-Conference-on-Emerging-Intelligent-Data-and-Web-Technologies_2012/8252

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 837

[7] V. J. Dindoliwala, R. D. Morena, ”Survey on Security

Mechanisms In NoSQL Databases”, International Journal of

Advanced Research in Computer Science, Vol. 8, No. 5, pp. 333-

338, 2017, ISSN No. 0976-5697.

[8] S. Agrawal, J. Verma, B. Mahidhariya, N. Patel, A. Patel, “Survey

on MongoDB: An Open-Source Document Database”,

International Journal of Advanced Research in Engineering and

Technology, Vol. 6, Issue. 12, pp. 01-11, 2015, ISSN Print: 0976-

6480.

[9] Z. Parker, S. Poe, S. Vrbsky, “Comparing nosql Mongodb to an

sql db”, proceeding of the 51th ACM Southest Conference, Article

No. 5, 2013, ISBN: 978-1-4503-1901-0.

[10] Chaitanya. P, Ranjan H. P, Kiran T. S, Anitha. K,

“Implementation of an Efficient MongoDB NoSQL Explorer for

Big Data Visualization”, International Journal of Advanced

Networking & Applications (IJANA), pp. 444 – 447, ISSN: 0975-

0282.

[11] A MongoDB White Paper, “RDBMS to MongoDB Migration

Guide”, Considerations and Best Practices, 2018.

[12] K. Bhamra, “A Comparative Analysis of MongoDB and

Cassandra”, A thesis presented for the degree of Master of

Science, Department of Informatics, University of Bergen, 2017.

[13] Swathi N, “Making your Application Highly Available and Highly

Scalable using NoSQL Database (MONGODB)”, International

Journal of Advanced Computational Engineering and Networking,

Vol. 1, Issue. 7, pp. 40 – 43, 2013, ISSN: 2320-2106.

[14] L. Bonnet, A. Laurent, M. Sala, B. Laurent, N. Sicard, “Reduce,

You Say: What NoSQL can do for Data Aggregation and BI in

Large Repositories”, 22nd International Workshop on Database

and Expert Systems Applications, pp. 483-488, 2011, doi:

10.1109/DEXA.2011.71,

[15] A. Nayak, A. Poriya, D. Poojary, ”Type of NoSQL Databases and

its Comparison with Relational Databases”, International Journal

of Applied Information Systems (IJAIS), Vol. 5, No. 4, pp. 16-19,

2013, ISSN : 2249-0868.

[16] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, D. Gosain, “A Survey

and Comparison of Relational and Non-Relational Database”,

International Journal of Engineering Research & Technology, Vol.

1, Issue. 6, pp. 1-5, 2012, ISSN: 2278-0181.

[17] Y. Li, S. Manoharan, “A performance comparison of SQL and

NoSQL databases”, IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing (PACRIM),

pp. 15-19, 2013, Electronic ISBN: 978-1-4799-1501-9.

[18] K. Chodorow, “MongoDB: The Definitive Guide”, 2
nd

 edition,

O’Reilly, 2013, ISBN: 978-1-449-34468-9.

[19] B. Jose, S. Abraham, Praveen Kumar V. S., ”Query Performance

Analysis in NoSQL and Relational Databases: MongoDB Vs

MySQL”, International Journal of Computer Sciences and

Engineering, Vol. 6, Special Issue. 4, pp. 179-182, 2018.

Authors’ Profiles

Ms.V. J. Dindoliwala, Asst. Prof., C. B. Patel
Computer College, Bharthana, Surat, has got
her M. Phil., M.C.A. and B.E. Electronics
degree from Veer Narmad South Gujarat
University, Surat and is pursuing Ph. D. from
the same university. She has published 4
research papers in National and International
conferences and journals. She has 9 years of
teaching experience.

Dr R D Morena is working as a Professor in
department of Computer Science, VNSG
University, Surat. He has been associated
with teaching in MCA course since last 23
years. He has obtained B.Sc. (Computer
Science) and MCA degrees. He has been
awarded M.Phil(Computer Sc.) in 2001 and
Ph.D. (Computer Science) in 2003. His
research area is Data Management. He has 51
research papers published in reputed journals & conference
proceedings. He has co-authored 5 books on computer Sc. subjects.
He is a member of the review committee of various national &
international journals. He is a member of the Departmental Research
Committee and is a registered Ph.D. guide at VNSG University. At
present he is supervising 9 research students in Computer Science.
He is a member of Board of Studies of Computer Science and also
Information Technology.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6602069
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6602069

