

 © 2018, IJCSE All Rights Reserved 786

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-9, Sept. 2018 E-ISSN: 2347-2693

Execution Time of Quick Sort on Different C Compilers: A Benchmark

Mehzabeen Kaur
1*

 , Surender Jangra
2

1
Dept. of Computer Science & Engineering, BBSBEC, Fatehgarh Sahib, Punjab, India

2
Dept. of Computer Science, Guru Teg Bahadur College, Bhawanigarh, Sangrur, Punjab, India

*Corresponding Author: jangra.surender@gmail.com, Tel.: +91-96715-02537

Available online at: www.ijcseonline.org

Accepted: 24/Sept./2018, Published: 30/Sept./2018

Abstract— Sorting is a process of arranging the elements in specific order. Computer systems use many sorting algorithms to

arrange the numbers in ascending or descending order and ‘quicksort’ is one of the better performing algorithms. This

algorithm follows divide-and-conquer approach by compiling the large data set to partition the list of elements and then

exchange the numbers after scanning the list. In today’s ever expanding world of technology, users find themselves in a

situation where they have so many choices in selecting the best compilers. However, most of the time, technically the users are

not able to identifying which translator is the best one for the completion of a particular assignment. The main aim of this paper

is to find out the best compiler for ‘quick sort’ to reduce the execution time and automation through analyzing the performance

of different compilers.

Keywords—Borland, Digital Mars, Tiny C, Bloodshed, CC386

I. INTRODUCTION

Although technological advancements are bringing in new

options of new technological changes but some

programming languages like C++, java etc. stand the test of

time as their flexibility and portability continue to be

important even in the constantly changing technological

scenario. Compiler is a computer program that transforms

source code from high level language into lower level

language or machine language. Compiler includes better

detection mechanisms, higher performance in terms of

execution and enhances optimization. The quality of the

resulting code and compilation time are not only two aspects

for measuring the efficiency of the compiler. That’s get

tricky as well, because as well, because there are so many

compilers options that can skew the results. To decide the

best compiler some factors come into the main role: time to

compiled code, size of compiled code, memory usage of

compiled code bugs etc.

Computer systems use many sorting algorithms to arrange

the numbers in ascending or descending order and quicksort

is one of them. Quicksort is a sorting algorithm that follows

divide-and-conquer approach to partition the list of elements

and hence, exchange the numbers after scanning the list. The

performance of different C compilers is measured to get the

least execution time of quicksort in case of arrays containing

large number of elements in it. This paper presents a review

of different C language compiler’s execution time of quick

sort.

The analysis is made on quicksort algorithm that selects a

pivot and thus compares that pivot with all elements present

in the list. The list is first scanned from right end towards the

left to get the number smaller than the pivot. On getting the

smaller number, the two numbers are swapped and similarly a

number is swapped when it is greater than pivot on scanning

the list from left to right. The list is then divided into sub-lists

till the pivot reaches its immovable original position.

quicksort(x,first,j-1);

quicksort(x,j+1,last);

In this paper, performance analysis of some of the compilers

has been examined and such kind of analytical exercise

brings a kind of easy option that helps the common men to

choose and buy the best compilers. This kind of exercise

facilitates the computer to run and work faster.

The rest of the paper is organized as follows. Overview of

different compilers is presented in section II, Experimental

setup in section III. Results and Analysis are presented in

section IV and at last concluding remarks are given in section

V.

II. OVERVIEW OF COMPILERS

In today’s fast changing technological scenario, users are left

with so many choices and it is a kind of challenge in

selecting the most suitable compiler. There are so many

factors like size of RAM, faster hard drives (including

SSDs), and CPUs that enhance its performance and speed

and thus adding more features to its ever expanding capacity.

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 787

There are lots of compilers which are used for converting the

source code in to object code. In this paper, we have used

Borland C++ 5.5, Tiny C, CC386, C-Free, Bloodshed Dev

C++, Digital Mars and Turbo C, compilers for evaluating the

performance of different compilers through quicksort.

Turbo C and Borland C++ 5.5 includes the compiler bcc32,

32 bit linker (tlink32), Borland Resource Compiler / Binder

(brc32, brcc32), C++ Win32 Pre-processor (cpp32) [1] etc.

Borland is one of the major manufacturers of compilers and

Turbo C++ is widely used product of Borland which is

compatible for c and c++ programming environment. Turbo

C++ supports IDE features for MS DOS and Microsoft

windows and has a better debugging tool named Turbo

Debugger. Turbo C was an integrated development

environment (IDE) for programming in the C language.

Tiny C: it is a small fast C compiler which is self-relying and

designed especially for slow computer with low disk size.

This do not required an external assembler or linker and can

be used as a backend code generator with the aid of another

library. This compiler is very fast and can compile large

projects in minimum time [1].

CC386: This is freeware Win 32 C compiler and one of the

older one that work for many years. It also includes an IDE

which provides compilation, editing and debugging. A very

impress achievement for one individual [1].The Run time

library in this package has WIN32 headers and an import

library, many windows programs will compile with it

although there are a few incompatibilities.

C-Free: It is also an Integrated Development

Environment (IDE) likes CC386 for C and

C++ programming language. It includes MinGW 5 package

in C-Free, as an IDE [2].

Bloodshed Dev C++: This is a full-featured Integrated

Development Environment (IDE) for the C/C++

programming language. Dev-C++ is generally considered a

Windows-only program [3]. Dev-C++ can also be used in

combination with Cygwin or any other GCC based compiler.

Digital Mars: This is Walter Bright owned company that

makes high performance compiler for the C, C++ and D

programming languages as well as DMD Script and related

IDE based packages for Win32, Win16, DOS32 and DOS.

This compiler possesses fastest compile/link times, powerful

optimization technology and is designed by complete library

source, HTML browsable documentation [4] and terms as

Integrated Development and Debugging Environment

(IDDE). Comparative analysis of different compilers are

shown in Table 1.

III. EXPERIMENTAL SETUP

A. Hardware and Software Requirement:

RAM: 2GB

Processor: CORE i3(2.53 GHz)

No. of Elements: 100

Table 1: Execution Time (sec) of Quicksort for 100

elements on different Compiler

Compiler

Version

Program

Execution

Environme

nt

CPU

Usage

(%)

Execution
Time

(Sec)

Average

Execution
Time

(Sec)

BORLAND

C/CPP

Borland

C++ 5.5

CUI

0-16 1.077

1.141142

857

0-19 1.155

0-19 1.155

0-19 1.139

0-25 1.154

0-25 1.154

0-23 1.154

TINY C

TCC

0.9.26

CUI

0-20 1.138

1.1837142

86

0-20 1.185

0-18 1.201

0-25 1.185

0-23 1.185

0-20 1.201

0-20 1.201

C-FREE

C-Free 5

GUI

0-25 3.837

4.071142

857

0-28 4.134

0-25 4.726

0-28 4.196

0-25 3.447

0-25 3.79

0-25 4.368

DEV C/CPP

DEV
C++ 5.0

CUI

0-17 5.553

1.9697142

86

0-25 2.355

0-18 1.17

0-16 1.17

0-20 1.185

0-16 1.17

0-21 1.185

DIGITAL

MARS

DIGIT

AL

MARS
8.56

CUI

0-16 1.077

1.141142

857

0-19 1.155

0-19 1.155

0-19 1.139

0-25 1.154

0-23 1.154

0-20 1.154

http://edn.embarcadero.com/article/20633
http://bellard.org/tcc/
http://www.members.tripod.com/~ladsoft/cc386.htm

 International Journal of Computer Sciences and Engineering Vol.6(9), Sept. 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 788

Table 2: Execution Time (sec) of Quicksort for 20000

elements on Turbo C Compiler

Compiler

Version

No. of

Elements

CPU Usage

(%)

Execution
Time

(Sec)

Average
Execution

Time (Sec)

TURBO

C

GUI

100 24-26 0 0

300 24-26 0 0

350 24-26 0 0

359 24-26 0 0

360 24-26 0.0549 0.001098

400 24-26 0.10989 0.0021978

500 24-26 0.549 0.01098

 1000 24-26 0.549 0.01098

 5000 24-26 0.7692 0.015384

 10000 24-26 1.0989 0.021978

 20000 24-26 2.0879 0.041758

IV. RESULTS AND DISCUSSION

The execution t i m e o f t h i s a l g o r i t h m i s computed

for different compilers discussed above and following are

the observations made on executing quicksort for an array

of 100 elements. But when I observed the same for Turbo

C compiler, the observations were as that shown in

Graphical representation of Execution Time on Turbo C

EC-Free>EDev-C/CPP>ETiny C>E CC386 >

(EBorland =E Digital Mars)>E Turbo C

Fig.1 Turbo C Average Execution Time

Turbo C executes the same algorithm at such a fast pace

that it takes less than 1sec to sort more than 20000

elements in an array that every other compiler consumes

for just 100 elements. No changes take place in the time

till the sorting of 359 elements. The first reading

occurred when 360 elements were taken into

consideration. Then, there occurs a very slight change of

few milliseconds as the number of elements in an array

starts increasing.

CONCLUSION

Our digital computer systems use many sorting algorithms to

arrange the numbers in ascending or descending order and

quicksort is one of them. Quicksort is one of the important

soring algorithms which is follows divide-and-conquer

approach to partition the list of elements. Quick short have large

application area which is best suitable for case of large data sets. So,

there i s the need is to reduce the execution time of this algorithm

for automation. In this paper firstly, the review of different C

compiler is done and then performance of different C compilers is

measured to get the least execution time of quicksort in case of

arrays containing large number of elements in it.

Turbo C executes the same algorithm at such a fast pace that it

takes less than 1sec to sort more than 20000 elements in an array

that every other compiler consumes for just 100 elements.

Th er e i s n o changes take place in the time till the sorting of

359 elements and after that first reading occurred when 360

elements were taken into consideration. Then, there occurs a

very slight change of few milliseconds as the number of

elements in an array starts increasing.

REFERENCES

[1] Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing

for wireless networks”, in Mobile Computing and Networking,

2000, pp. 243–254.

[2] https://en.wikipedia.org/wiki/List_of_compilers

[3] https://en.wikipedia.org/wiki/Tiny_C_Compiler

[4] http://ladsoft.tripod.com/cc386_compiler.html

Authors Profile

Mehzabeen Kaur has received his Bachelor’s

Degree in Computer science and Engineering from

Punjab Technical University, Jalandhar (Punjab),

India. She is Final Year student of M.Tech in

Computer and Engineering at Baba Banda Singh

Bahadur Engineering College Fatehgarh Sahib,

Punjab, India. Her main research interests are in image processing,

artificial n eural networks genetic algorithms and fuzzy logic.

Dr. Surender completed his M.Tech degree in

Computer Science and Engineering from Ch. Devi

Lal University Sirsa (Hry) in 2006,, Ph.D in

Computer Science and Application from

Kurukshetra University, Kurukshetra in 2011.. He

has more than 10 years teaching experience to

teach B.Tech, M.Tech., BCA and MCA Classes. Recently he is

working as an Assistant Professor, in the Department of Computer

Science, at GTB College, Bhawanigarh (Sangrur), Punjab, India. He

has published over 50 publications in different International

Journals and Conferences of repute. His research interests lies in

Fault Tolerance in Mobile Distributed Systems, Adhoc N/W, Data

Mining, Cloud Computing, System Security and Cryptography.

https://en.wikipedia.org/wiki/List_of_compilers
https://en.wikipedia.org/wiki/Tiny_C_Compiler
http://ladsoft.tripod.com/cc386_compiler.html

