

 © 2018, IJCSE All Rights Reserved 819

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

An Improved Shuffling Approach Towards Skew Mitigation in

Mapreduce

N. K. Seera

1*
, S. Taruna

2

1
Research Scholar, Banasthali Vidyapeeth, Jaipur, India

2
 Institute of Engineering and Technology (IET), J.K. Lakshmipat University, Jaipur, India

*Corresponding Author: narinder.k2010@gmail.com

Available online at: www.ijcseonline.org

Accepted: 14/Jul/2018, Published: 31/Jul/2018

Abstract— In MapReduce applications, map tasks are generally launched in parallel and are assigned equal sized input splits to

work on. Thus map side skews are rare to occur. In contrast, reduce side skews are much more challenging because the

shuffling of the intermediate data, partition sizes and partition assignment to worker nodes cannot be determined at early

stages. Therefore it is one of the critical problems in MapReduce model which should be thoroughly studied and possible

solutions need to framed. This paper studies various causes of skew and common approaches used for skew mitigation in real

world applications. Paper presents a novel approach to address reduce side skew where the large volume of intermediate data is

preprocessed by intermediate nodes to make the size of intermediate keys smaller. The partial results from intermediate nodes

are collected, aggregated and sent to final worker nodes to generate final output. The proposed model is applicable to

applications where there is no interdependency between values of similar keys. The approach used by proposed model is

contrary to the approach where the data of skewed nodes is repartitioned dynamically into small fragments and assigned to idle

nodes in the cluster.

Keywords— MapReduce, Skew Mitigation, Shuffling, Partitioning

I. INTRODUCTION

Since few years, the rapid growth of data-intensive and

business-intelligence applications accelerated the use of

distributed data processing tools such as MapReduce [1].

MapReduce is a widely used programming model meant for

distributed computing of large scale data on a cluster of

commodity hardware. It has been in great interest for

processing big data applications due to its well-known

powerful features such as scalability, elasticity, flexible

programming model etc [49]. But processing voluminous

data in a distributed fashion demands fair task distribution

among different computational nodes of the cluster. Unfair

task distribution in distributed environment causes

unnecessary delays in task competition resulting in overall

performance deterioration. In MapReduce model, skew

occurs when data is assigned unevenly to processing nodes.

 Researchers in this field have done pioneering work on

scheduling MapReduce tasks uniformly [38]-[40]. Few

studies assumed that initially the input to MapReduce tasks is

uniformly distributed [9] and the intermediate results are also

evenly distributed at later stages (reduce side) as they are

hash partitioned. Unfortunately, all real world datasets are

not always uniform in nature and the applications processing

such datasets may experience skew at map side or reduce

side. Examples of such applications are PageRank [2],

CloudBurst [22][26], Inverted Index [5], Friends-of-Friends,

Top K% [30] etc.

 There are two main factors which cause skew in big

data applications – internal and external. Internal factor is the

result of poor application logic or unevenness in data itself.

External factor refers to the heterogeneity of machines in the

cluster. Some common solutions to overcome the problems

caused by these factors include rescheduling, repartitioning,

speculative execution [1][7][14] etc. A large number of

studies identified the problem of skewed jobs in MapReduce

which have been reported in Section 5.

 Considering unevenness in the data, it is observed that

skew arises in reduce phase when few keys are associated

with large cluster of values, while others with a very small

cluster. When dealing with large volumes of data, the huge

amount of intermediate data generated as map outputs are

typically moved among nodes of the cluster which requires

writing intermediate data locally to disk, reading it later for

shuffling and finally distributing it to reduce nodes. This

causes significant overheads in network transfers which

usually effects overall job execution. Moreover, reducers

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 820

processing keys with large cluster of values may take

significantly longer to finish as compared to other reducers.

There are few Hadoop-based systems which follow

repartitioning approach, where the long running task is sub

divided into smaller partitions and those partitions are

assigned to idle nodes in the cluster or to the nodes which

finish early [4][44]. But this repartitioning approach entails

extra overheads in partitioning tasks and re-distributing

them. The application master has to keep track on the

statistics of nodes where sub-partitions are assigned.

 In this paper, we proposed an approach to address

record size skew by working on intermediate data. The main

objective is to provide a shuffle service for shuffling and

preprocessing intermediate data to reduce the size of <key,

list of values> before it reaches final reduce node.

Intermediate keys are processed by multiple nodes so that

when it reaches final reduce node, reduce side skew is

unlikely to occur. This results in reducing large amount of

data to be shuffled and hence also reducing shuffle delays.

Our approach is contrary to re-partitioning, where the keys

with larger cluster of values are repartitioned into smaller

clusters. The idea is similar to FP-Hadoop [12][30] which

introduced a new phase Intermediate-Reduce (IR) in

MapReduce model. It creates IR fragments and IR splits,

where set of intermediate values are processed by

intermediate reducers and then by final reducers (in the Final

Reduce phase). In FP-Hadoop, the master keeps the IRF

(Intermediate Reduce Fragments) metadata and the Reduce

Scheduler schedules the tasks using one of the algorithm –

Greedy, Locality-aware or IR Size. The proposed system,

introduces a new component Shuffle Tracker to predict the

size of keys, shuffling data and scheduling it on a node.

The main contributions of this paper are:

 Studying different approaches of skew mitigation

 Studying the importance of handling intermediate data to

be shuffled

 Discussing the design details of proposed model where

intermediate data is first processed by intermediate nodes

to reduce the size of large keys and then by final reducers.

 Discussing the design and working of Application Master

for executing a MapReduce job.

Rest of the paper is organized as – Section 2 introduces

background details of MapReduce and causes of skew.

Section 3 discusses motivation behind this study. Section 4

briefs the current approaches used for skew mitigation in

MapReduce applications. Section 5 explains the importance

of handling intermediate data. Section 6 discusses the

proposed model with implementation details. Section 7 talks

about related work in this direction. Finally, Section 8

concludes the paper.

II. BACKGROUND

This section gives an overview of job execution in

MapReduce framework and the main causes of skew in

MapReduce applications. This will help in understanding the

main difference in map side and reduce side skew.

A. MapReduce Pipeline

In Hadoop [34], job execution is carried out by two types of

nodes- job tracker and task tracker. Job tracker is responsible

for assigning tasks to task trackers and monitoring overall

job execution whereas task trackers are the nodes where

actually computations are performed. Each task tracker

executes an instance of a map() function [51]. A task tracker

can also be configured to execute multiple child JVMs (Java

Virtual Machine) in multiple slots which depends on number

of cores in the processor. When a client submits a

MapReduce job, the job tracker manages it and creates

number of map tasks per input split. An input split is a

logical division of data which corresponds to a block on

HDFS [29]. The job tracker keeps the complete information

regarding these input splits, their location on HDFS and their

size. Map tasks process these input splits in the order of their

sizes so that the largest one gets processed first to reduce

overall runtime.

 When a task is assigned to a task tracker, it reads its

input split and starts processing its records one by one. These

records are read in form of <key, value> pairs. The map()

function produces intermediate results as <key, value> pairs

which are stored in a buffer area (configurable parameter),

specially allocated for it. Reduce phase starts when all map

tasks finish. All reducers are assigned with a different

partition to work on values belonging to similar keys. This is

called shuffling. The reduce tasks first apply merge sort

algorithm on all the input it receives and then processes it

further to generate final output which is written on HDFS.

Once all reduce tasks are over, the client who submitted the

job is informed by the job tracker (master).
 There are situations when few reducers are overburden

as they are assigned with more values as some reducers are

assigned less than average number of values. In this case,

data skew is likely to occur. Next section briefly explains

various types of skew with their causes.

Fig 1: MapReduce Algorithm

Input – record in form of (k,v)

Output – List of intermediate (k1,v1) pairs
1. Map (key, value)

2. For all key є set

3. do
4. Emit (k1,v1)

5. End for

Input – Intermediate (k1,list (v1)) with same keys
Output – List of final (k2,v2) pairs

1. Reduce (k1, list (v1))

2. For all v1 in list
3. do

4. Process v1

5. Emit (k2,v2)

6. End for

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 821

B. Causes of Skew
Table 1: Causes of skew and their major factors

III. MOTIVATION

A. Effects of Skew – A motivational Example

WordCount is a very popular and common application in

Hadoop which reads an input file and returns the frequency

of each word in that file. The map phase reads all words and

generates intermediate <key,value> pairs which are stored on

local disks of mappers. In some cases, for job optimization

combiners are used for local aggregations where each

mapper produces local aggregated list of words with their

frequencies. These intermediate results are then partitioned

on the basis of similar key groups and are passed to reducers

for final results. Now in some cases skew may occur at

reducer side where few reducers get more data to process as

few key groups are assigned more values. To balance the

load among reduce nodes, most of the existing algorithms

wait until all the map tasks finish before launching reduce

tasks. Fig 2 describes the runtime of map and shuffle phase

of WordCount application in [10]. It is clear from the figure

that the shuffle phase consumes much longer to finish as

compared to small map tasks and reduce phase.

 A large number of studies in this direction reveal that

partition skew has gained much attention and several

solutions have been proposed for the same. Only few studies

addressed the problem of long delays in shuffle phase by

running some online algorithms [10][16][27]. Therefore we

put our efforts to propose a solution where shuffle phase

starts in parallel to map-reduce phases and does not wait till

all the map tasks finish.

Fig 2: Execution of WordCount in [10]. Region a, b and c

represents - actual map, shuffle and reduce execution times

respectively. Area stuck between b and c indicates - sorting time

B. Research Gap

When dealing with large volumes of data, the huge amount

of intermediate data generated as map outputs are typically

moved among nodes of the cluster which requires writing

intermediate data locally to disk, reading it later for shuffling

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 822

and finally distributing it to reduce nodes. This causes

significant overheads in network transfers which usually

effects overall job execution.

 Moreover, we know that Hadoop parallelizes job

execution by launching multiple map and reduce tasks

concurrently. But this parallelism is not fully exploited due

to the tight coupling between map, shuffle and reduce tasks

due to which MapReduce jobs suffer significant delays in

execution affecting overall job performance. Also during

partitioning, there are cases where few keys are assigned

large number of values and few keys with lesser values. This

uneven partition sizes cause skew in reduce phase.

Surprisingly, the poor impact of shuffling and partitioning

have not gained attention in the literature and motivated us to

propose better solution for this problem.

IV. CURRENT APPROACHES FOR SKEW MITIGATION

A. Preprocessing and Sampling

In this approach, the sampling algorithm accurately

approximates the distribution of intermediate keys to

reducers. The algorithm samples a small fraction of the map

output and partitions the data accordingly. It prioritizes the

execution of sampled data over normal reduce tasks.

Whenever it finds any idle node, it assigns the sampling data

to it. Because it launches a small task, it finishes quite early

in the system without delaying remaining reduce tasks. It

takes into consideration the heterogeneity of the computing

resources while balancing the load among the reduce tasks.

Sampling approach is also used in [10][13][14].

B. Speculative Execution

When some machines run tasks slowly relative to other

machines due to hardware malfunctioning, speculative

execution is performed where these victim tasks are

rescheduled on some fast machines [1][7][14]. Such slow

tasks are often called stragglers and a number of studies

proposed different solutions to overcome the delay caused by

stragglers. Some studies used task scheduler to collect the

information regarding the jobs which are taking longer to

complete so that these tasks can be dynamically assigned to

some other machines.

C. Custom Partitioning and Re-partitioning

LEEN [9] addresses partitioning skew by partitioning all

intermediate keys with respect to their frequencies and fair

distribution of reducers’ input. It uses a heuristic technique to

identify the best node suitable for partitioning any specific

key. It guarantees fairness in data distribution under large

key frequencies variations along with high performance. Few

studies [4][44] believe in addressing skew by continuous

monitoring the runtime statistics of an application and

partitioning data on-the-fly. By means of computing local

statistics during map phase and aggregating them to produce

global statistics, the global data distribution is approximated.

Based on this distribution, the map output is directed to

reducers in a way that achieves improved load balancing.

Partitioning functions used in these studies include hash

partitioning; range partitioning, radix and round-robin

partitioning.

D. Batching at Reducer Side

Some studies believe in improving the performance of

MapReduce by reducing the number of disk accesses using

batching at reduce side. In this approach, instead of writing

map output to local files, data is shuffled directly and then

written to a single file at reduce side, resulting in one file per

reduce task. This method significantly reduces disk seeks at

the reducer side. [15] and [41] used batching and sampling

methods to address data skew.

V. SIGNIFICANCE OF HANDLING INTERMEDIATE DATA

The intermediate data generated by map tasks are stored

locally in a buffer area. Size of this buffer is a configurable

parameter which can be set via mapreduce.task.io.sort.mb

property. When the size of this buffer reaches almost 80% of

its available size, the contents are transferred to a file (spill)

on the disk. This process is called spilling. Spilling happens

at least once, when the mapper finished, because the output

of the mapper should be sorted and saved to the disk for

reducer processes to read it. The spill file contains partitions

where similar keys are stored together. A combiner can be

used to perform local aggregations on map side before

spilling is done. The map task is said to be complete when all

spill files are merged into a single output file and the

(application) master is informed. Now, the reducer fetches its

partition from each of the mappers and merges the partitions,

called shuffling. After a reducer has obtained its complete set

of inputs, a user defined function is applied on it to generate

final output to be written on HDFS. This complete process is

shown in figure 3.

 It has been observed [41] that the cost of handling

intermediate data grows when number of keys in

intermediate <k,v> data set grows with variable size values.

The presence of skew in map outputs affects number of

reduce waves and their completion time. With large number

of reduce waves, number of retrievals from mappers local

disk also increases, which in turn increases number of disk

seeks. So an increase in the variable size of intermediate

data, degrades Hadoop performance non-linearly.

 This paper presents a model where regardless of skew in

intermediate data, the keys are processed by multiple

reducers in parallel. The key objective is to utilize the

computing power of all reduce nodes equally and making

reduce nodes work on an average of intermediate data in

parallel. This model would also work in the worst case,

where almost 90% of values belong to the similar key. The

design details of the model are given in the next section.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved

823

Fig 3: MapReduce Pipeline

VI. DESIGN DETAILS

The proposed model provides a shuffle service for shuffling

and preprocessing intermediate data to reduce the size of

<key, list of values> before it reaches final reduce node.

Intermediate keys are processed by multiple nodes so that

when it reaches final reduce node, reduce side skew is

unlikely to occur. It starts scheduling reduce tasks as soon as

map tasks begin producing their output. The main difference

between the current approach used by Hadoop for scheduling

map-reduce tasks and proposed model is that in the proposed

model the keys with large cluster of values are not processed

by a single reduce node making it overloaded. Instead, a

combiner based approach is followed up where similar keys

are processed by multiple reduce nodes and the partial results

are forwarded to the final reducer for aggregation.

A. Design overview

The basic flow of <key,value> pairs in proposed model is

shown in Figure 4. The figure shows the required

components of the proposed model. It includes mapper

nodes, an application master and reducer nodes. The mapper

nodes process map tasks on their input split. The map outputs

are stored in the buffer, which is spilled into different

partitions in the spill files available on local disks. The

ApplicationMaster is a framework-specific library which

executes a single application. It is responsible for negotiating

resource containers from the ResourceManager, tracking and

monitoring the status of the running application. With the

help of Application master, YARN shares the metadata of all

running applications with the cluster. When map tasks

produce intermediate data, it is processed and aggregated by

reducer nodes.

 In the proposed model, the application master is

configured with two new components Shuffle Tracker and

Merger. Shuffle Tracker first collects map outputs and

predicts the size of each key it receives. If the size of the key

is larger than the size of partition that can be handled by

reduce nodes, it partitions it into smaller fragments and

schedules the fragments on multiple nodes. Then, Merger

collects the partial results from these nodes. It is responsible

for merging partial results belonging to same key into single

partition. After merging, Shuflle Tracker is notified. Merger

continuously keep reporting the partial results it receives

from the nodes. When Shuffle Tracker receives multiple

partitions for same keys, it again re-computes the size of the

key. The cycles continue to iterate till the size of the key is

reduced to the required partition size so that it can be

efficiently processed by final reduce nodes. The final

reducers process these partial (aggregated) results and

produces a single output file which is written on HDFS.

Fig 4: Architecture of proposed MapReduce Execution Strategy

B. Partition Placement

The proposed model works on the objective to balance the

distribution of intermediate data among reduce nodes. Unlike

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 824

other distributed systems, where an optimal partition

placement plan is developed, this model does not need to

plan partition placement strategy. Instead, the partition is

scheduled on a free node as soon as mappers start writing

their outputs on their local disks. All nodes get equal

workload because partitions belonging to the same key are

not scheduled on the same node. Other hadoop based

systems such as iShuffle [11] follow heuristic approach –

largest partition and least workload for partition placement

because best placement is a NP-hard problem.

C. Job Execution Model

In MapReduce programming model, when map tasks are

assigned to mapper nodes, the execution of task begins by

reading the input split defined by RecordReader. The map

function is applied to the input split and intermediate data is

generated. The set of intermediate <key,value> pairs are

written to buffer. Before spilling the contents of the buffer

the intermediate keys are split into partitions and the values

belonging to same key are placed in sorted fashion in the

same partition. The combiner aggregates the values within

the partition to reduce its size. Before writing the

intermediate output file to local disk, all partitions (or spills)

are merged. In the proposed model, these partitions are not

merged together. Instead they are read by Shuffle Tracker

which is responsible for predicting the size of each key and

scheduling it on a reduce node. The sizes of keys are

determined by merging the partitions of same keys arriving

from different mapper nodes.

The intermediate <key,value> pairs are dynamically grouped

together into intermediate splits, as

(k,v)  list (k1,v1) // processed by each mapper

(k1, list (v1))  (k2, list (v2)) // by intermediate redcuers

(k2, list (v2))  list (k3,v3) // final output by reducers

In the second stage, where intermediate keys are processed,

multiple intermediate reducers may work on same keys for

faster computations and to avoid reduce side skew.

D. Shuffle and Reduce Task Scheduling

The model disconnects the shuffling and reduce tasks and

these tasks run on different nodes in the cluster. Shuffling is

done by Shuffle Tracker, component running on Application

Master whereas reduce tasks run on reduce nodes. The

sequence of flow is shown in the figure. It consists of three

main steps. In the first step, the Shuffle Tracker collects

intermediate results produced by mappers from their local

files stored on disks. During this step the size of spill files

and size of each partition within a spill is determined and the

statistics are stored on Application Master. In the second

step, Shuffle Tracker creates splits from different partitions

of belonging to same key and launches them on intermediate

reducer nodes. For this purpose multiple nodes can be used

to work on same keys in parallel. The size of the newly

created partitions should be either 64MB or 128MB

(depending upon the configuration of the block size). This is

why every reduce node gets roughly equal amount of data to

process. Finally in the third step, the partial results from all

the intermediate nodes are collected and sorted by key. A

Merger receives the partial results which are merged together

(belonging to the same key). Then it is forwarded to final

reduce nodes for final output and being written to HDFS.

VII. RELATED WORK

As discussed in section 4, different studies put their efforts in

different directions to address skew mitigation. [1][20] used

speculative execution where the tasks on the slow machine

are launched at fast machines. Dryad [44] uses speculative

execution to run fully distributed and scalable applications

on a cluster of machines. [19] uses LATE scheduler to

estimate remaining time of jobs on slow machines so that

they can be rescheduled on some other machines. Q. Chen et

al [25] proposed a scalable model for data skew. This model

uses process bandwidth and progress rate in a current phase

to decide slow tasks and it calculates tasks remaining time

and makes predictions about process speed using EWMA

(Exponentially Weighted Moving Average).

 [10] and [14] uses a sampling approach which

accurately approximates the distribution of intermediate keys

to reducers. It prioritizes the execution of sampled data over

normal reduce tasks. It takes into consideration the

heterogeneity of the computing resources while balancing the

load among the reduce tasks appropriately. MTCRS [13], a

Minimum Transmission Cost Reduce Task Scheduler, uses a

mathematical model based on ARS sampling method to

handle the problem of data locality and partitioning skew. It

accepts the waiting time and transmission cost of each reduce

task to predict where to launch any specific reduce task for a

given partition.

 [23] [24] proposed a dynamic MapReduce system with

situation aware mappers which constantly examines the

execution of all map tasks and dynamically splits the map

input data. [4] used two load balancing algorithms- fine

partitioning and dynamic fragmentation, to deal with

complex reduce jobs and skewed data. These algorithms are

based on cost model which evaluates cost of reduce tasks in

distributed environment and helps in uniform load balancing

of highly skewed tasks.

 SkewTune [5] system mitigates skew in both map side

and reduce side by repartitioning the long jobs and allocating

to idle nodes freed up by shorter jobs. It runs three

algorithms – detect to identify the longest time by estimating

the remaining time of jobs, scan to collect the repartitioning

information, and plan to repartition the job and assign it to

available nodes. EDSHA [36] is a skew handling approach

which works as an intermediate task between map and

reduce tasks. It identifies the high performance node in the

cluster by examining the efficiency and execution times of

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 825

nodes and assigns huge data to it dynamically. ImKP [50]

based MapReduce framework also deals with reduce Side

skew by using group based ranking technique to aggregate

intermediate data.

 CHISEL [37], uses two different approaches to deal

with skewed data. It uses skew detection and mitigation

approach for computational skew that occurs at map side,

and skew avoidance approach for reduce side skew.

SkewReduce [3] system employs a static optimizer which

requires user to provide cost functions to partition the input

data to avoid computational skew. Partitioning among

reducers depends on this cost function to optimize data

distribution. iShuffle [11] proposed a novel shuffle-on-write

operation which decouples shuffle phase from reduce tasks

because the coupling of these two phases delays job

completion and desecrates the parallelism. [9][45] address

partitioning skew, where all intermediate keys are

dynamically partitioned with respect to their frequencies. It is

done by continuous monitoring the runtime statistics of a

running application. Partitioning skew is also addressed in

[8][15][27][32] and [33].

 OPTIMA [28], mitigates partition skew by predicting the

distribution of workload of all reduce tasks. It exploits a

technique called deviation detection to examine the

overloaded tasks and thus reduces their execution time by

making suitable resource allocation for these overloaded

tasks. DREAMS [31] also uses dynamic resource allocation

to handle skew at reduce side. In case of partition skew,

rather than repartitioning the data, it allocates few more

resources to the victim node to let it finish faster. [6]

addressed the problem of record size skew and discussed

how such skews can be handled in an application specific

manner. [16] [17] [18] describe techniques to handle specific

types of record size skew. [7] uses greedy bin-packing

heuristics to deal with partition skew.

VIII. CONCLUSION & FUTURE WORK

The proposed model works for applications where there is no

interdependency between values of same keys. For example,

the results of aggregate functions like sum, count etc can be

obtained correctly by partitioning the values into smaller

partitions and merging the final results later on. But this is

not the case with average function. In such a case, it is

required that all the values associated with the same keys

should be processed at same node. As a future work, we plan

to extend this model where a variety of applications

experiencing shuffle skew and reduce side skew can be

handled efficiently and can be processed in a cost optimized

way. To make this model working, few parameters need to

be included in configuration files supported by Hadoop. The

system must provide transparent services to user where user

can tune parameters according to their cluster deployment

and type of their application.

References

[1]. J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, OSDI 2004.

[2]. Y. Kwon et al, “A study of skew in mapreduce applications”, 5
th

Open Cirrus Summit, 2011.

[3]. Y.Kwon et al, “Skew-resistant parallel processing of feature-

extracting scientific user-defined functions”, in Proceedings of

ACM Symposium on Cloud Computing, 2010, pp. 75- 86.

[4]. B. Gufler et al, “Handing Data Skew in MapReduce, in

Proceedings of 1
st
 International Conference on Cloud Computing

and Services Science”, 2011, pp. 574- 583.

[5]. Y. Kwon et al, “SkewTune: Mitigating skew in MapReduce

applications”, ACM 2012, SIGMOD 2012 USA.

[6]. J. Lin, “The Curse of Zipf and Limits to Parallelization: A Look at

the stragglers problem in Map Reduce”, July 2009, USA.

[7]. J. Rosen and B. Zhao, “Fine Grained Micro Tasks for MapReduce

Skew Handling”, 2012.

[8]. M. Hanif and C. Lee, “An efficient key partitioning scheme for

heterogeneous MapReduce clusters”, ICACT 2016, ISBN 978-89-

968650-7-0.

[9]. S. Ibrahim et al, “Handling partitioning skew in MapReduce using

LEEN”, Springer 2013.

[10]. Y. Le et al, “Online Load Balancing for MapReduce with skewed

Data Input”, IEEE Transactions, 2014.

[11]. Y. Guo et al, “iShuffle: Improving Hadoop Performance with

shuffle-on-write”, 10
th
 International Conference on Autonomic

Computing 2013.

[12]. R. Akbarinia et al, “An efficient solution for processing skewed

MapReduce Jobs”, Globe'2015: 8th International Conference on

Data Management in Cloud, Grid and P2P Systems, Sep 2015,

Spain.

[13]. X. Tang et al, “A Reduce Task Scheduler for MapReduce with

minimum transmission cost based on sampling evaluation”,

IJDTA, Vol 8, No 1 (2015), pp 1-10.

[14]. Qi Chen et al, “LIBRA: Light Weight data skew mitigation in Map

Reduce”, IEEE Transactions on Parallel & Distributed Systems,

2015, Vol 26, Issue 9.

[15]. A. Rasmussen et al. “Themis: an i/o-efficient MapReduce”. In

Proceedings of the Third ACM Symposium on Cloud Computing,

page 13. ACM, 2012.

[16]. S. Ibrahim et al, “Leen: Locality/fairness-aware key partitioning

for MapReduce in the cloud”. In Cloud Computing Technology

and Science (CloudCom), 2010 IEEE Second International

Conference on, pages 17–24.IEEE, 2010.

[17]. M. Hammoud et al, “Center-of-gravity reduce task scheduling to

lower mapreduce network traffic” in 2012 IEEE 5th International

Conference on, pages 49–58. IEEE, 2012.

[18]. M. Hammoud and M.F. Sakr, “Locality-aware reduce task

scheduling for mapreduce”. in 2011 IEEE Third International

Conference on, pages 570–576. IEEE, 2011.

[19]. M. Zaharia et al, “Improving mapreduce performance in

heterogeneous environments”. In Proceedings of the 8th USENIX

conference on Operating systems design and implementation,

pages 29–42, 2008.

[20]. G. Ananthanarayanan et al, “Reining in the outliers in map-reduce

clusters using Mantri”. In Proceedings of the 9th USENIX

conference, OSDI’10, pages 1–16, Berkeley, CA, USA, 2010.

USENIX Association.

[21]. Zaharia et al, “Delay scheduling: A simple technique for achieving

locality and fairness in cluster scheduling”. In Proc. of the ACM

European Conference on Computer Systems (EuroSys) 2010).

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 826

[22]. M.C. Schatz, “Cloudburst: highly sensitive read mapping with

MapReduce”. Bioinformatics, 25(11):1363–1369, 2009.

[23]. R. Vernica et al, “Adpative Map Reduce using Situation aware

Mappers”, ACM 978-1-4503-0790-1, EDBT March 26-30, 2012.

[24]. R. Vernica et al, “Efficient parallel set-similarity joins using map

reduce”, in Proceedings of SIGMOD Conf, pages 495-506, 2010.

[25]. Q. Chen, C. Liu and Z. Xiao, “Improving MapReduce

Performance Using Smart Speculative Execution Strategy”,

IEEETransactions on Computers (TC)63(4), 2014.

[26]. Y. Kwon et al, “Managing Skew in Hadoop”, IEEE Computer

Society Technical Committee on Data Engineering 2013.

[27]. Y. Gao et al, “Handling data skew in MapReduce cluster by using

partitioning tuning”, Journal of Health engineering, Volume

(2017), 2017.

[28]. Liu et al, “OPTIMA: on-line partitioning skew mitigation for

MapReduce with resource adjustment”, Journal of Network and

Systems Management, vol. 24, no. 4, pp. 859–883, 2016.

[29]. Apache Software Foundation, “Hadoop Distributed File System:

Architecture and Design”, 2007.

[30]. R. Akbarinia et al, “FP-Hadoop: Efficient Processing of Skewed

MapReduce jobs”, Information Systems, Elsevier, 2016, 60, pp-

 69-84.

[31]. Z.Liu et al, “Dynamic Resource Allocation for MapReduce with

Partitioning Skew”, IEEE Transactions on Computers, Issue No.

11 - Nov. (2016 vol. 65)ISSN: 0018-9340, pp: 3304-3317.

[32]. S. R. Ramakrishnan et al, “Balancing reducer skew in MapReduce

workloads using progressive sampling”, in Proceedings of the

Third ACM Symposium on Cloud Computing, pp. 16–28, ACM

2012.

[33]. J. Berlinska and M. drozdowski, “Mitigating Partitioning Skew in

MapReduce Computations”, MISTA 2013.

[34]. J. Dittrich and J.-A. Quian_e-Ruiz. “Efficient Big Data processing

in Hadoop MapReduce”. Proceedings of the VLDB Endowment

(PVLDB), 5(12):2014{2015, 2012C. Doulkeridis, K. Norvaget, A

Survey of Large Analytical Query Processing in Map-Reduce, the

VLDB Journal, 2013.

[35]. B. Arputhamary et al, “EDSHA: An Efficient Data Skew Handling

Approach for MapReduce Model using Time Series Data”, IJCTA

9(27) 2016, pp 423-430.

[36]. P. Dhawalia et al, “Chisel++: Handling partitioning skew in

MapReduce framework using efficient range partitioning

technique”, DIDIC 2014, pp 21-28.

[37]. H. Chang et al, “Scheduling in MapReduce-like systems for fast

competition time”, In proceedings of IEEE INFOCOM, China,

2011.

[38]. J.Tan et al, “Coupling task progress for MapReduce resource

aware scheduling”, in Proceedings of IEEE INFOCOM, 2013.

[39]. F. Chen et al, “Joint scheduling of processing and shuffle phases in

MapReduce systems”, in Proceedings of IEEE INFOCOM, 2012.

[40]. Y. Yuan et al, “On interference-aware provisioning for cloud

based big data processing”, in Proceedings of ACM/IEEE IWQoS,

June 2013.

[41]. S. Rao et al, “Sailfish- A framework for large scale data

processing”, ACM Symposium on Cloud computing, SOCC 2012,

UA, 2012.

[42]. Y. Liang et al, “Variable sized map and locality aware reduce on

public-resource grids”, Future Gen Computing Systems, 27(6) :

843-849, June 2011.

[43]. M. Isard et al, “Dryad: Distributed Data-parallel programs for

sequential building blocks”, In proceedings of EuroSys Conf,

2007.

[44]. K. Devine et al, “Partitioning and Load balancing for emerging

parallel applications and architectures”, Chapter 6, Parallel

Processing for Scientific Computing, 2006.

[45]. T. Y. Chen et al, “LaSA: A locality-aware scheduling algorithm

for Hadoop-MapReduce resource assignment”, Collaboration

Technologies and Systems (CTS), 2013, pp. 342-346.

[46]. S. Seo et al, “HPMR: Prefetching and pre-shuffling in shared

MapReduce computation environment”, IEEE International

Conference, New Orleans, LA, pp. 1-8.

[47]. N.K. Seera and S. Taruna, “Analyzing cost parameters affecting

Map Reduce application performance”, I. J. Computer Science and

Information Technology, 2016, 8, 50-58.

[48]. N. Kaur and S. Taruna, “Efficient data layouts for cost optimized

map reduce operations”, IEEEXplore, 2015, 600-604.

[49]. M. Kaur and G. Dhaliwal, “Performance comparison of

MapReduce and Apache Spark on Hadoop for Big Data Analysis”,

International Journal of Computer Sciences and Engeering, Vol 3

(11), PP- 66 – 69, Nov 2015.

[50]. M. Dhivya et al, “Hadoop MapReduce Online in Big Figure

Analytics”, International Journal of Computer Sciences and

Engeering, Vol 2 (9), PP- 100 – 104, Sep 2014.

[51]. J. Rajesh Khanna, “An Enormous Inspection of MapReduce”,

International Journal of Scientific Research in Computer Science,

Engineering and Information technology, Vol 2, Issue 6, IISN 2

[52]. Ouyang, X, Zhou, H, Clement, et al.,”Mitigate Data Skew Caused

Stragglers through ImKP Partition in MapReduce”, Proceedings.

36th IEEE International Performance Computing and

Communications Conference (IPCCC), 10-12 Dec 2017, San

Diego, California, USA. IEEE.

Authors Profile

N.K. Seera, is a research scholar in Banasthali vidyapeeth. She is carrying out her research work in Data Processing using

MapReduce frmaework. Her areas of intererst are Databases, Distributed computing, Big Data etc. She has published various

research papers in National and International Journals. She is also a memebr of CSI and other autonomous governing bodies.

Dr S.Taruna, is working as an Associate Professor in Institute of Engineering and Technology (IET) at JK

Lakshmipat University. She has 20 years of teaching, research, and administrative experience. She has also

worked with Banasthali University for 12 years and CIStems Software Ltd for 8 years. She did her PhD from

Banasthali University and currently supervising PhD candidates working in the domain of Communication

Network, Data Mining and Cloud Network. She has several publications to her credit and has presented

research papers at National and International conferences and journals . She is Reviewer and Committee

Member of various International Journals and Conferences. Her area of interest for Research, Training and

Consultancy includes Adhoc & Sensor Network, Data Mining , Information Retrieval and Cloud Network.

https://www.computer.org/csdl/trans/tc/2016/11/07415958-abs.html
https://www.computer.org/csdl/trans/tc/2016/11/07415958-abs.html

