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Abstract— In MapReduce applications, map tasks are generally launched in parallel and are assigned equal sized input splits to 

work on. Thus map side skews are rare to occur. In contrast, reduce side skews are much more challenging because the 

shuffling of the intermediate data, partition sizes and partition assignment to worker nodes cannot be determined at early 

stages. Therefore it is one of the critical problems in MapReduce model which should be thoroughly studied and possible 

solutions need to framed. This paper studies various causes of skew and common approaches used for skew mitigation in real 

world applications. Paper presents a novel approach to address reduce side skew where the large volume of intermediate data is 

preprocessed by intermediate nodes to make the size of intermediate keys smaller. The partial results from intermediate nodes 

are collected, aggregated and sent to final worker nodes to generate final output. The proposed model is applicable to 

applications where there is no interdependency between values of similar keys. The approach used by proposed model is 

contrary to the approach where the data of skewed nodes is repartitioned dynamically into small fragments and assigned to idle 

nodes in the cluster. 
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I.  INTRODUCTION  

 

Since few years, the rapid growth of data-intensive and 

business-intelligence applications accelerated the use of 

distributed data processing tools such as MapReduce [1]. 

MapReduce is a widely used programming model meant for 

distributed computing of large scale data on a cluster of 

commodity hardware. It has been in great interest for 

processing big data applications due to its well-known 

powerful features such as scalability, elasticity, flexible 

programming model etc [49]. But processing voluminous 

data in a distributed fashion demands fair task distribution 

among different computational nodes of the cluster. Unfair 

task distribution in distributed environment causes 

unnecessary delays in task competition resulting in overall 

performance deterioration. In MapReduce model, skew 

occurs when data is assigned unevenly to processing nodes. 

        Researchers in this field have done pioneering work on 

scheduling MapReduce tasks uniformly [38]-[40]. Few 

studies assumed that initially the input to MapReduce tasks is 

uniformly distributed [9] and the intermediate results are also 

evenly distributed at later stages (reduce side) as they are 

hash partitioned. Unfortunately, all real world datasets are 

not always uniform in nature and the applications processing  

 

 

such datasets may experience skew at map side or reduce 

side. Examples of such applications are PageRank [2], 

CloudBurst [22][26], Inverted Index [5], Friends-of-Friends, 

Top K% [30] etc. 

        There are two main factors which cause skew in big 

data applications – internal and external. Internal factor is the 

result of poor application logic or unevenness in data itself. 

External factor refers to the heterogeneity of machines in the 

cluster. Some common solutions to overcome the problems 

caused by these factors include rescheduling, repartitioning, 

speculative execution [1][7][14] etc. A large number of 

studies identified the problem of skewed jobs in MapReduce 

which have been reported in Section 5. 

          Considering unevenness in the data, it is observed that 

skew arises in reduce phase when few keys are associated 

with large cluster of values, while others with a very small 

cluster. When dealing with large volumes of data, the huge 

amount of intermediate data generated as map outputs are 

typically moved among nodes of the cluster which requires 

writing intermediate data locally to disk, reading it later for 

shuffling and finally distributing it to reduce nodes. This 

causes significant overheads in network transfers which 

usually effects overall job execution. Moreover, reducers 



   International Journal of Computer Sciences and Engineering                                     Vol.6(7), Jul 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        820 

processing keys with large cluster of values may take 

significantly longer to finish as compared to other reducers. 

There are few Hadoop-based systems which follow 

repartitioning approach, where the long running task is sub 

divided into smaller partitions and those partitions are 

assigned to idle nodes in the cluster or to the nodes which 

finish early [4][44]. But this repartitioning approach entails 

extra overheads in partitioning tasks and re-distributing 

them. The application master has to keep track on the 

statistics of nodes where sub-partitions are assigned.  

        In this paper, we proposed an approach to address 

record size skew by working on intermediate data. The main 

objective is to provide a shuffle service for shuffling and 

preprocessing intermediate data to reduce the size of <key, 

list of values> before it reaches final reduce node. 

Intermediate keys are processed by multiple nodes so that 

when it reaches final reduce node, reduce side skew is 

unlikely to occur. This results in reducing large amount of 

data to be shuffled and hence also reducing shuffle delays. 

Our approach is contrary to re-partitioning, where the keys 

with larger cluster of values are repartitioned into smaller 

clusters. The idea is similar to FP-Hadoop [12][30] which 

introduced a new phase Intermediate-Reduce (IR) in 

MapReduce model. It creates IR fragments and IR splits, 

where set of intermediate values are processed by 

intermediate reducers and then by final reducers (in the Final 

Reduce phase). In FP-Hadoop, the master keeps the IRF 

(Intermediate Reduce Fragments) metadata and the Reduce 

Scheduler schedules the tasks using one of the algorithm – 

Greedy, Locality-aware or IR Size. The proposed system, 

introduces a new component Shuffle Tracker to predict the 

size of keys, shuffling data and scheduling it on a node. 

The main contributions of this paper are: 

 Studying different approaches of skew mitigation 

 Studying the importance of handling intermediate data to 

be shuffled 

 Discussing the design details of proposed model where 

intermediate data is first processed by intermediate nodes 

to reduce the size of large keys and then by final reducers. 

 Discussing the design and working of Application Master 

for executing a MapReduce job. 

Rest of the paper is organized as – Section 2 introduces 

background details of MapReduce and causes of skew. 

Section 3 discusses motivation behind this study. Section 4 

briefs the current approaches used for skew mitigation in 

MapReduce applications. Section 5 explains the importance 

of handling intermediate data. Section 6 discusses the 

proposed model with implementation details. Section 7 talks 

about related work in this direction. Finally, Section 8 

concludes the paper. 

 

II. BACKGROUND  

 

This section gives an overview of job execution in 

MapReduce framework and the main causes of skew in 

MapReduce applications. This will help in understanding the 

main difference in map side and reduce side skew.  

 

A. MapReduce Pipeline 

In Hadoop [34], job execution is carried out by two types of 

nodes- job tracker and task tracker. Job tracker is responsible 

for assigning tasks to task trackers and monitoring overall 

job execution whereas task trackers are the nodes where 

actually computations are performed. Each task tracker 

executes an instance of a map() function [51]. A task tracker 

can also be configured to execute multiple child JVMs (Java 

Virtual Machine) in multiple slots which depends on number 

of cores in the processor. When a client submits a 

MapReduce job, the job tracker manages it and creates 

number of map tasks per input split. An input split is a 

logical division of data which corresponds to a block on 

HDFS [29]. The job tracker keeps the complete information 

regarding these input splits, their location on HDFS and their 

size. Map tasks process these input splits in the order of their 

sizes so that the largest one gets processed first to reduce 

overall runtime.    

       When a task is assigned to a task tracker, it reads its 

input split and starts processing its records one by one. These 

records are read in form of <key, value> pairs. The map() 

function produces intermediate results as <key, value> pairs 

which are stored in a buffer area (configurable parameter), 

specially allocated for it. Reduce phase starts when all map 

tasks finish. All reducers are assigned with a different 

partition to work on values belonging to similar keys. This is 

called shuffling. The reduce tasks first apply merge sort 

algorithm on all the input it receives and then processes it 

further to generate final output which is written on HDFS. 

Once all reduce tasks are over, the client who submitted the 

job is informed by the job tracker (master). 
       There are situations when few reducers are overburden 

as they are assigned with more values as some reducers are 

assigned less than average number of values. In this case, 

data skew is likely to occur. Next section briefly explains 

various types of skew with their causes. 

 

                   
Fig 1: MapReduce Algorithm 

Input – record in form of (k,v)   

Output – List of intermediate (k1,v1) pairs 
1. Map (key, value) 

2.      For all key є set 

3.        do 
4.        Emit (k1,v1)  

5.      End for 

Input – Intermediate (k1,list (v1)) with same keys 
Output – List of final (k2,v2) pairs 

1. Reduce (k1, list (v1)) 

2.     For all v1 in list 
3.       do 

4.       Process v1 

5.       Emit (k2,v2) 

6.    End for 
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B. Causes of Skew 
Table 1: Causes of skew and their major factors 

 
 

III. MOTIVATION 

 

A. Effects of Skew – A motivational Example 

WordCount is a very popular and common application in 

Hadoop which reads an input file and returns the frequency 

of each word in that file. The map phase reads all words and 

generates intermediate <key,value> pairs which are stored on 

local disks of mappers. In some cases, for job optimization 

combiners are used for local aggregations where each 

mapper produces local aggregated list of words with their 

frequencies. These intermediate results are then partitioned 

on the basis of similar key groups and are passed to reducers 

for final results. Now in some cases skew may occur at 

reducer side where few reducers get more data to process as 

few key groups are assigned more values. To balance the 

load among reduce nodes, most of the existing algorithms 

wait until all the map tasks finish before launching reduce 

tasks. Fig 2 describes the runtime of map and shuffle phase 

of WordCount application in [10]. It is clear from the figure 

that the shuffle phase consumes much longer to finish as 

compared to small map tasks and reduce phase. 

        A large number of studies in this direction reveal that 

partition skew has gained much attention and several 

solutions have been proposed for the same. Only few studies 

addressed the problem of long delays in shuffle phase by 

running some online algorithms [10][16][27]. Therefore we 

put our efforts to propose a solution where shuffle phase 

starts in parallel to map-reduce phases and does not wait till 

all the map tasks finish. 

 
Fig 2: Execution of WordCount in [10]. Region a, b and c 

represents - actual map, shuffle and reduce execution times 

respectively. Area stuck between b and c indicates - sorting time 
 

B. Research Gap 

When dealing with large volumes of data, the huge amount 

of intermediate data generated as map outputs are typically 

moved among nodes of the cluster which requires writing 

intermediate data locally to disk, reading it later for shuffling 
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and finally distributing it to reduce nodes. This causes 

significant overheads in network transfers which usually 

effects overall job execution.  

       Moreover, we know that Hadoop parallelizes job 

execution by launching multiple map and reduce tasks 

concurrently. But this parallelism is not fully exploited due 

to the tight coupling between map, shuffle and reduce tasks 

due to which MapReduce jobs suffer significant delays in 

execution affecting overall job performance. Also during 

partitioning, there are cases where few keys are assigned 

large number of values and few keys with lesser values. This 

uneven partition sizes cause skew in reduce phase. 

Surprisingly, the poor impact of shuffling and partitioning 

have not gained attention in the literature and motivated us to 

propose better solution for this problem. 

 

IV. CURRENT APPROACHES FOR SKEW MITIGATION 

 

A. Preprocessing and Sampling 

In this approach, the sampling algorithm accurately 

approximates the distribution of intermediate keys to 

reducers. The algorithm samples a small fraction of the map 

output and partitions the data accordingly. It prioritizes the 

execution of sampled data over normal reduce tasks. 

Whenever it finds any idle node, it assigns the sampling data 

to it. Because it launches a small task, it finishes quite early 

in the system without delaying remaining reduce tasks. It 

takes into consideration the heterogeneity of the computing 

resources while balancing the load among the reduce tasks. 

Sampling approach is also used in [10][13][14]. 

 

B. Speculative Execution 

When some machines run tasks slowly relative to other 

machines due to hardware malfunctioning, speculative 

execution is performed where these victim tasks are 

rescheduled on some fast machines [1][7][14]. Such slow 

tasks are often called stragglers and a number of studies 

proposed different solutions to overcome the delay caused by 

stragglers. Some studies used task scheduler to collect the 

information regarding the jobs which are taking longer to 

complete so that these tasks can be dynamically assigned to 

some other machines. 

 

C. Custom Partitioning and Re-partitioning 

LEEN [9] addresses partitioning skew by partitioning all 

intermediate keys with respect to their frequencies and fair 

distribution of reducers’ input. It uses a heuristic technique to 

identify the best node suitable for partitioning any specific 

key. It guarantees fairness in data distribution under large 

key frequencies variations along with high performance. Few 

studies [4][44] believe in addressing skew by continuous 

monitoring the runtime statistics of an application and 

partitioning data on-the-fly. By means of computing local 

statistics during map phase and aggregating them to produce 

global statistics, the global data distribution is approximated. 

Based on this distribution, the map output is directed to 

reducers in a way that achieves improved load balancing. 

Partitioning functions used in these studies include hash 

partitioning; range partitioning, radix and round-robin 

partitioning.   

 

D. Batching at Reducer Side 

Some studies believe in improving the performance of 

MapReduce by reducing the number of disk accesses using 

batching at reduce side. In this approach, instead of writing 

map output to local files, data is shuffled directly and then 

written to a single file at reduce side, resulting in one file per 

reduce task. This method significantly reduces disk seeks at 

the reducer side. [15] and [41] used batching and sampling 

methods to address data skew. 

 

V. SIGNIFICANCE OF HANDLING INTERMEDIATE DATA  

 

The intermediate data generated by map tasks are stored 

locally in a buffer area. Size of this buffer is a configurable 

parameter which can be set via mapreduce.task.io.sort.mb 

property. When the size of this buffer reaches almost 80% of 

its available size, the contents are transferred to a file (spill) 

on the disk.  This process is called spilling. Spilling happens 

at least once, when the mapper finished, because the output 

of the mapper should be sorted and saved to the disk for 

reducer processes to read it. The spill file contains partitions 

where similar keys are stored together. A combiner can be 

used to perform local aggregations on map side before 

spilling is done. The map task is said to be complete when all 

spill files are merged into a single output file and the 

(application) master is informed. Now, the reducer fetches its 

partition from each of the mappers and merges the partitions, 

called shuffling. After a reducer has obtained its complete set 

of inputs, a user defined function is applied on it to generate 

final output to be written on HDFS. This complete process is 

shown in figure 3. 

         It has been observed [41] that the cost of handling 

intermediate data grows when number of keys in 

intermediate <k,v> data set grows with variable size values. 

The presence of skew in map outputs affects number of 

reduce waves and their completion time. With large number 

of reduce waves, number of retrievals from mappers local 

disk also increases, which in turn increases number of disk 

seeks. So an increase in the variable size of intermediate 

data, degrades Hadoop performance non-linearly.  

        This paper presents a model where regardless of skew in 

intermediate data, the keys are processed by multiple 

reducers in parallel. The key objective is to utilize the 

computing power of all reduce nodes equally and making 

reduce nodes work on an average of intermediate data in 

parallel. This model would also work in the worst case, 

where almost 90% of values belong to the similar key. The 

design details of the model are given in the next section.  
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Fig 3: MapReduce Pipeline 

 

 

VI. DESIGN DETAILS 

 

The proposed model provides a shuffle service for shuffling 

and preprocessing intermediate data to reduce the size of 

<key, list of values> before it reaches final reduce node. 

Intermediate keys are processed by multiple nodes so that 

when it reaches final reduce node, reduce side skew is 

unlikely to occur. It starts scheduling reduce tasks as soon as 

map tasks begin producing their output. The main difference 

between the current approach used by Hadoop for scheduling 

map-reduce tasks and proposed model is that in the proposed 

model the keys with large cluster of values are not processed 

by a single reduce node making it overloaded. Instead, a 

combiner based approach is followed up where similar keys 

are processed by multiple reduce nodes and the partial results 

are forwarded to the final reducer for aggregation.   

 

A. Design overview 

The basic flow of <key,value> pairs in proposed model is 

shown in Figure 4. The figure shows the required 

components of the proposed model. It includes mapper 

nodes, an application master and reducer nodes. The mapper 

nodes process map tasks on their input split. The map outputs 

are stored in the buffer, which is spilled into different 

partitions in the spill files available on local disks. The 

ApplicationMaster is a framework-specific library which 

executes a single application. It is responsible for negotiating 

resource containers from the ResourceManager, tracking and 

monitoring the status of the running application. With the 

help of Application master, YARN shares the metadata of all 

running applications with the cluster. When map tasks 

produce intermediate data, it is processed and aggregated by 

reducer nodes. 

         In the proposed model, the application master is 

configured with two new components Shuffle Tracker and 

Merger. Shuffle Tracker first collects map outputs and 

predicts the size of each key it receives. If the size of the key 

is larger than the size of partition that can be handled by 

reduce nodes, it partitions it into smaller fragments and 

schedules the fragments on multiple nodes. Then, Merger 

collects the partial results from these nodes. It is responsible 

for merging partial results belonging to same key into single 

partition. After merging, Shuflle Tracker is notified. Merger 

continuously keep reporting the partial results it receives 

from the nodes. When Shuffle Tracker receives multiple 

partitions for same keys, it again re-computes the size of the 

key. The cycles continue to iterate till the size of the key is 

reduced to the required partition size so that it can be 

efficiently processed by final reduce nodes. The final 

reducers process these partial (aggregated) results and 

produces a single output file which is written on HDFS.       

 

 
Fig 4: Architecture of proposed MapReduce Execution Strategy 

 

B. Partition Placement 

The proposed model works on the objective to balance the 

distribution of intermediate data among reduce nodes. Unlike 
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other distributed systems, where an optimal partition 

placement plan is developed, this model does not need to 

plan partition placement strategy. Instead, the partition is 

scheduled on a free node as soon as mappers start writing 

their outputs on their local disks. All nodes get equal 

workload because partitions belonging to the same key are 

not scheduled on the same node. Other hadoop based 

systems such as iShuffle [11] follow heuristic approach – 

largest partition and least workload for partition placement 

because best placement is a NP-hard problem.    

  

C. Job Execution Model 

In MapReduce programming model, when map tasks are 

assigned to mapper nodes, the execution of task begins by 

reading the input split defined by RecordReader. The map 

function is applied to the input split and intermediate data is 

generated. The set of intermediate <key,value> pairs are 

written to buffer. Before spilling the contents of the buffer 

the intermediate keys are split into partitions and the values 

belonging to same key are placed in sorted fashion in the 

same partition. The combiner aggregates the values within 

the partition to reduce its size. Before writing the 

intermediate output file to local disk, all partitions (or spills) 

are merged. In the proposed model, these partitions are not 

merged together. Instead they are read by Shuffle Tracker 

which is responsible for predicting the size of each key and 

scheduling it on a reduce node. The sizes of keys are 

determined by merging the partitions of same keys arriving 

from different mapper nodes.  

The intermediate <key,value> pairs are dynamically grouped 

together into intermediate splits, as 

 

(k,v)  list (k1,v1) // processed by each mapper  

(k1, list (v1))  (k2, list (v2))     // by intermediate redcuers 

(k2, list (v2))  list (k3,v3)        // final output by reducers 

 

In the second stage, where intermediate keys are processed, 

multiple intermediate reducers may work on same keys for 

faster computations and to avoid reduce side skew. 

 

D. Shuffle and Reduce Task Scheduling  

The model disconnects the shuffling and reduce tasks and 

these tasks run on different nodes in the cluster. Shuffling is 

done by Shuffle Tracker, component running on Application 

Master whereas reduce tasks run on reduce nodes. The 

sequence of flow is shown in the figure. It consists of three 

main steps. In the first step, the Shuffle Tracker collects 

intermediate results produced by mappers from their local 

files stored on disks. During this step the size of spill files 

and size of each partition within a spill is determined and the 

statistics are stored on Application Master. In the second 

step, Shuffle Tracker creates splits from different partitions 

of belonging to same key and launches them on intermediate 

reducer nodes. For this purpose multiple nodes can be used 

to work on same keys in parallel. The size of the newly 

created partitions should be either 64MB or 128MB 

(depending upon the configuration of the block size). This is 

why every reduce node gets roughly equal amount of data to 

process. Finally in the third step, the partial results from all 

the intermediate nodes are collected and sorted by key. A 

Merger receives the partial results which are merged together 

(belonging to the same key). Then it is forwarded to final 

reduce nodes for final output and being written to HDFS.  

 

VII. RELATED WORK  

 

As discussed in section 4, different studies put their efforts in 

different directions to address skew mitigation. [1][20] used 

speculative execution where the tasks on the slow machine 

are launched at fast machines. Dryad [44] uses speculative 

execution to run fully distributed and scalable applications 

on a cluster of machines. [19] uses LATE scheduler to 

estimate remaining time of jobs on slow machines so that 

they can be rescheduled on some other machines. Q. Chen et 

al [25] proposed a scalable model for data skew. This model 

uses process bandwidth and progress rate in a current phase 

to decide slow tasks and it calculates tasks remaining time 

and makes predictions about process speed using EWMA 

(Exponentially Weighted Moving Average). 

         [10] and [14] uses a sampling approach which 

accurately approximates the distribution of intermediate keys 

to reducers. It prioritizes the execution of sampled data over 

normal reduce tasks. It takes into consideration the 

heterogeneity of the computing resources while balancing the 

load among the reduce tasks appropriately. MTCRS [13], a 

Minimum Transmission Cost Reduce Task Scheduler, uses a 

mathematical model based on ARS sampling method to 

handle the problem of data locality and partitioning skew. It 

accepts the waiting time and transmission cost of each reduce 

task to predict where to launch any specific reduce task for a 

given partition.  

         [23] [24] proposed a dynamic MapReduce system with 

situation aware mappers which constantly examines the 

execution of all map tasks and dynamically splits the map 

input data. [4] used two load balancing algorithms- fine 

partitioning and dynamic fragmentation, to deal with 

complex reduce jobs and skewed data. These algorithms are 

based on cost model which evaluates cost of reduce tasks in 

distributed environment and helps in uniform load balancing 

of highly skewed tasks.  

         SkewTune [5] system mitigates skew in both map side 

and reduce side by repartitioning the long jobs and allocating 

to idle nodes freed up by shorter jobs. It runs three 

algorithms – detect to identify the longest time by estimating 

the remaining time of jobs, scan to collect the repartitioning 

information, and plan to repartition the job and assign it to 

available nodes. EDSHA [36] is a skew handling approach 

which works as an intermediate task between map and 

reduce tasks. It identifies the high performance node in the 

cluster by examining the efficiency and execution times of 
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nodes and assigns huge data to it dynamically. ImKP [50] 

based MapReduce framework also deals with reduce Side 

skew by using group based ranking technique to aggregate 

intermediate data. 

        CHISEL [37], uses two different approaches to deal 

with skewed data. It uses skew detection and mitigation 

approach for computational skew that occurs at map side, 

and skew avoidance approach for reduce side skew. 

SkewReduce [3] system employs a static optimizer which 

requires user to provide cost functions to partition the input 

data to avoid computational skew. Partitioning among 

reducers depends on this cost function to optimize data 

distribution. iShuffle [11] proposed a novel shuffle-on-write 

operation which decouples shuffle phase from reduce tasks 

because the coupling of these two phases delays job 

completion and desecrates the parallelism. [9][45] address 

partitioning skew, where all intermediate keys are 

dynamically partitioned with respect to their frequencies. It is 

done by continuous monitoring the runtime statistics of a 

running application. Partitioning skew is also addressed in 

[8][15][27][32] and [33]. 

       OPTIMA [28], mitigates partition skew by predicting the 

distribution of workload of all reduce tasks. It exploits a 

technique called deviation detection to examine the 

overloaded tasks and thus reduces their execution time by 

making suitable resource allocation for these overloaded 

tasks. DREAMS [31] also uses dynamic resource allocation 

to handle skew at reduce side. In case of partition skew, 

rather than repartitioning the data, it allocates few more 

resources to the victim node to let it finish faster. [6] 

addressed the problem of record size skew and discussed 

how such skews can be handled in an application specific 

manner. [16] [17] [18] describe techniques to handle specific 

types of record size skew. [7] uses greedy bin-packing 

heuristics to deal with partition skew.  

 

VIII. CONCLUSION & FUTURE WORK 

 

The proposed model works for applications where there is no 

interdependency between values of same keys. For example, 

the results of aggregate functions like sum, count etc can be 

obtained correctly by partitioning the values into smaller 

partitions and merging the final results later on. But this is 

not the case with average function. In such a case, it is 

required that all the values associated with the same keys 

should be processed at same node. As a future work, we plan 

to extend this model where a variety of applications 

experiencing shuffle skew and reduce side skew can be 

handled efficiently and can be processed in a cost optimized 

way. To make this model working, few parameters need to 

be included in configuration files supported by Hadoop. The 

system must provide transparent services to user where user 

can tune parameters according to their cluster deployment 

and type of their application.  
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