
 © 2016, IJCSE All Rights Reserved 57

International Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-4, Issue-11 E-ISSN: 2347-2693

Efficient Code Clone Analysis to Detect Vulnerability in Dynamic

Web Applications

Vineetha K R1* and N. Santhana Krishna
2

1,2

Department Of Computer Science

AJK College of Arts And Science, Coimbatore

(Affiliated To Bharathiar University, Coimbatore & Approved By Govt. Of Tamil Nadu)

vpvprakash@gmail.com and seema.80.sk@gmail.com

Available online at: www.ijcseonline.org

Received: Oct/26/2016 Revised: Oct/31/2016 Accepted: Nov/22/2016 Published: Nov/30/2016

Abstract— In this system an approach to clone analysis and Vulnerability detection for Web applications has been proposed

together with a prototype implementation for web pages. Our approach analyzes the page structure, implemented by specific

sequences of HTML tags, and the content displayed for both dynamic and static pages. Moreover, for a pair of web pages we

also consider the similarity degree of their java source. The similarity degree can be adapted and tuned in a simple way for

different web applications. We have reported the results of applying our approach and tool in a case study. The results have

confirmed that the lack of analysis and design of the Web application has effect on the duplication of the pages. In particular,

these results allowed us to identify some common features for the web pages that could be integrated, by deleting the

duplications and code clones. Moreover, the clone analysis and Vulnerability detection of the pages enabled to acquire

information to improve the general quality and conceptual/design of the database of the web application. Indeed, we plan to

exploit the results of the code clone analysis method to support web application reengineering activities.

Keywords— Vulnerability Detection, Code Clone, Dynamic Webpages, Duplication

I. INTRODUCTION

Code Vulnerabilities are similar program structures of

considerable size and significant similarity. Several studies

suggest that as much as 20-50 percent of large software

systems consist of Vulnerability code . Knowing the

location of Vulnerabilities helps in program understanding

and maintenance. Some Vulnerabilities can be removed with

refactoring , by replacing them with function calls or

macros, or we can use unconventional meta level techniques

such as Aspect-Oriented Programming or XVCL to avoid

the harmful effects of Vulnerabilities.

Vulnerability detection is an active area of

research, with a multitude of Vulnerability detection

techniques been proposed in the literature . One limitation of

the current research on code Vulnerabilities is that it is

mostly focused on the fragments of duplicated code (we call

them simple Vulnerabilities), and not looking at the big

picture where these fragments of duplicated code are

possibly part of a bigger replicated program structure. We

call these larger granularity similarities structural

Vulnerabilities. Locating structural vulnerabilities can help

us see the forest from the trees, and have significant value

for program understanding, evolution, reuse, and

reengineering.

Vulnerability detection tools produce an

overwhelming volume of simple vulnerabilities‟ data that is

difficult to analyze in order to find useful vulnerabilities.

This problem prompted different solutions that are related to

our idea of detecting structural vulnerabilities. Some

vulnerability detection approaches target large-granularity

vulnerabilities such as similar files, without specifying the

details of the low-level similarities contained inside them.

For example, the authors consider a whole webpage as a

“vulnerability” of another page if the two pages are similar

beyond a given threshold, computed as the Levenshtein

distance. Without the details of the low-level similarities in

the large-granularity vulnerabilities, it is not always

straightforward to take remedial actions such as refactoring

or creating generic representation, as these actions require a

detailed analysis of low-level similarities. Moreover,

Vulnerability Miner goes a step ahead in vulnerability

analysis, by looking at the bigger similarity structures

consisting of groups of such highly similar files.

Organization of the Paper

The Papers is organized as the following chapters

Chapter 1 includes the Abstract of the proposed paper

Chapter 2 includes the Introduction of the research

Chapter 3 includes the Proposed System

Chapter 4 includes the Methodology of the Research

Chapter 5 includes The Conclusion of the Research

Chapter 6 includes the references made for the research

3. PROPOSED SYSTEM

Problem Definition

To find if automatically produced Vulnerability report

summaries can help a developer with their work, the system

mailto:vpvprakash@gmail.com
mailto:seema.80.sk@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 58

conducted a task-based evaluation that considered the use of

summaries for Vulnerability report duplicate detection tasks.

system found that summaries helped the study participants

save time, that there was no evidence that accuracy degraded

when summaries were used and that most participants

preferred working with summaries to working with original

Vulnerability reports. Many existing text summarizing

approaches exist that could be used to generate summaries

of Vulnerability reports. Given the strong similarity between

Vulnerability reports and other conversational data

Objective

We propose an approach to automatically testing and

refactoring modern web applications and detect duplicated

pages in dynamic Web sites and on the analysis of both the

page structure, implemented by specific sequences of

HTML tags, and the displayed content. In addition, for each

pair of dynamic pages we also consider the similarity degree

of their scripting code. The similarity degree of two pages is

computed using different similarity metrics for the different

parts of a web page based on the code duplication string edit

distance. We have implemented a prototype to automate the

clone detection process on web applications developed using

technology and used it to validate our approach

4. METHODOLOGY

Reusable Mechanism and Code Consistency

A code Vulnerability is a code portion in source

files that is identical or similar to another. It is common

opinion that code Vulnerabilities make the source files very

hard to modify consistently. Vulnerabilities are introduced

for various reasons such as lack of a good design, fuzzy

requirements, undisciplined maintenance and evolution, lack

of suitable reuse mechanisms, and reusing code by copy-

and-paste. Thus, code Vulnerability detection can effectively

support the improvement of the quality of a software system

during software maintenance and evolution.

The Internet and World Wide Web diffusion are

producing a substantial increase in the demand of web sites

and web applications. The very short time-to-market of a

web application, and the lack of method for developing it,

promote an incremental development fashion where new

pages are usually obtained reusing (i.e. “cloning”) pieces of

existing pages without adequate documentation about these

code duplications and redundancies. The presence of

Vulnerabilities increase system complexity and the effort to

testing and refactoring , maintain and evolve web systems,

thus the identification of Vulnerabilities may reduce the

effort devoted to these activities as well as to facilitate the

migration to different architectures.

This project proposes an approach for detecting

Vulnerabilities in web sites and web applications, obtained

tailoring the existing methods to detect Vulnerabilities in

traditional software systems. The approach has been

assessed performing analysis on several web sites and web

applications.

Software Environment and Maintenance

Maintaining software systems is getting more complex and

difficult task, as the scale becomes larger. It is generally said

that code Vulnerability is one of the factors that make

software maintenance difficult. This project also develops a

maintenance support environment, which visualizes the code

Vulnerability information and also overcomes the limitation

of existing tools.

Collaborative Structures and Message Passing

One limitation of the current research on code

Vulnerabilities is that it is mostly focused on the fragments

of duplicated code (we call them simple Vulnerabilities),

and not looking at the big picture where these fragments of

duplicated code are possibly part of a bigger replicated

program structure. We call these larger granularity

similarities structural Vulnerabilities. Locating structural

Vulnerabilities can help us see the forest from the trees, and

have significant value for program understanding, evolution,

reuse, and reengineering. The samples are abstracted from

Vulnerabilities found in Project Collaboration portals

developed in industry using ASP and JEE and a PHP-based

portal developed in our lab study. Structural Vulnerabilities

are often induced by the application domain design

technique or mental templates used by programmers. Similar

design solutions are repeatedly applied to solve similar

problems

Detection granularity structural Vulnerabilities

Reuse only what is similar, knowing Vulnerabilities helps in

reengineering of legacy systems for reuse. Detection of

large-granularity structural Vulnerabilities becomes

particularly useful in the reuse context . While the

knowledge of structural Vulnerabilities is usually evident at

the time of their creation, we lack formal means to make the

presence of structural Vulnerabilities visible in software,

other than using external documentation or naming

conventions. The knowledge of differences among structural

Vulnerability instances is implicit too, and can be easily lost

during subsequent software development and evolution. The

limitation of considering only simple Vulnerabilities is

known in the field . The main problem is the huge number

of simple Vulnerabilities typically reported by Vulnerability

detection tools. There have been a number of attempts to

move beyond the raw data of simple Vulnerabilities. It has

been proposed to apply classification, filtering,

visualization, and navigation to help the user make sense of

the cloning information. Another way is to detect

Vulnerabilities of larger granularity than code fragments.

For example, some Vulnerability detectors can detect

Vulnerability files, while others target detecting purely

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 59

conceptual similarities using information retrieval methods

rather than detecting simple Vulnerabilities.

Template Extraction and Code Stealing

Generally speaking, templates, as a common model

for all pages, occur quite fixed as opposed to data values

which vary across pages. Finding such a common template

requires multiple pages or a single page containing multiple

records as input. When multiple pages are given, the

extraction target aims at page-wide information. When

single pages are given, the extraction target is usually

constrained to record wide information, which involves the

addition issue of record-boundary detection. Page-level

extraction tasks, although do not involve the addition

problem of boundary detection, are much more complicated

than record-level extraction tasks since more data are

concerned. A common technique that is used to find

template is alignment: either string or tree alignment. As for

the problem of distinguishing template and data, most

approaches assume that HTML tags are part of the template,

while EXALG considers a general model where word tokens

can also be part of the template and tag tokens can also be

data. However, EXALG‟s approach, without explicit use of

alignment, produces many accidental equivalent classes,

making the reconstruction of the schema not complete.

Traditional Classification, Filtering, Visualization

Detection of large-granularity structural

Vulnerabilities becomes particularly useful in the reuse

context. While the knowledge of structural Vulnerabilities is

usually evident at the time of their creation, we lack formal

means to make the presence of structural Vulnerabilities

visible in software, other than using external documentation

or naming conventions. The knowledge of differences

among structural Vulnerability instances is implicit too, and

can be easily lost during subsequent software development

and evolution. The limitation of considering only simple

Vulnerabilities is known in the field. The main problem is

the huge number of simple Vulnerabilities typically reported

by Vulnerability detection tools. There have been a number

of attempts to move beyond the raw data of simple

Vulnerabilities. It has been proposed to apply classification,

filtering, visualization, and navigation to help the user make

sense of the cloning information. Another way is to detect

Vulnerabilities of larger granularity than code fragments.

For example, some Vulnerability detectors can detect

Vulnerabilityd files, while others target detecting purely

conceptual similarities using information retrieval methods

rather than detecting simple Vulnerabilities. The approach

described in this paper is also based on the idea of applying

a follow-up analysis to simple Vulnerabilities‟ data. We

observed that at the core of the structural Vulnerabilities,

often there are simple Vulnerabilities that coexist and relate

to each other in certain ways. This observation formed the

basis of our work on defining and detecting structural

Vulnerabilities. From this observation, we proposed a

technique to detect some specific types of structural

Vulnerabilities from the repeated combinations of collocated

simple Vulnerabilities.

Extracting Structured Data from Web Pages
Many web sites contain large sets of pages generated using a

common template or layout. For example, Amazon lays out

the author, title, comments, etc. in the same way in all its

book pages. The values used to generate the pages (e.g., the

author, title,...) typically come from a database. In this

paper, we study the problem of automatically extracting the

database values from such template generated web pages

without any learning examples or other similar human input.

We formally define a template, and propose a model that

describes how values are encoded into pages using a

template. We present an algorithm that takes, as input, a set

of template-generated pages, deduces the unknown template

used to generate the pages, and extracts, as output, the

values encoded in the pages. Experimental evaluation on a

large number of real input page collections indicates that our

algorithm correctly extracts data in most cases.

Proposed Methodology

The WWW distribution are generating a

considerable boost in the order of web sites and web

applications. A code similarity is a code portion in source

files that is matching or similar to another. It is general view

that code clones make the source files very hard to modify

constantly. Clones are launched for various reasons such as

lack of a good design, fuzzy requirements, disorderly

protection and evolution, lack of suitable reuse mechanisms,

and reusing code by copy-and-paste. Thus, code clone

detection can effectively support the improvement of the

quality of a software system during software preservation

and growth.

Figure 1: Architecture Diagram [12]

 International Journal of Computer Sciences and Engineering Vol.-4(11), Nov 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 60

The very short time-to-scope of a web application,

and the need of method for developing it, support an

increase al expansion fashion where new pages are usually

obtained reusing (i.e. “cloning”) pieces of existing pages

without sufficient documentation about these code

duplications and redundancies. The presence of clones

increase system difficulty and the effort to test, maintain and

change web systems, thus the identification of clones may

reduce the effort devoted to these activities as well as to

facilitate the migration to different architectures.

5. CONCLUSION

The survey focus on describing our approach for function

clone detection for detecting Vulnerabilities to web

applications with the main goal to assess the effectiveness

and efficiency of the approach, and measure the extent

Vulnerability detection opportunities. The research tries web

applications from the public domain, for which we did not

have expectations about how much duplication and

Vulnerabilities exists, and one web application from the

research domain for which it was known that there were

many duplicated tag functions. The first static web

application, is a basic auction application that can be

integrated into other web sites to add simple auctions

features. The second dynamic web applications and third is

dynamic web application with different programming

language applications, respectively, are both web-based

Levistein Distance.

REFERENCES

[1] J. Anvik, L. Hiew, and G.C. Murphy, “Coping with an Open

Vulnerability Repository,” Proc. OOPSLA Workshop

Eclipse Technology eXchange, 2005.

[2] J. Anvik, L. Hiew, and G.C. Murphy, “Who Should Fix This

Vulnerability?” Proc. 28th Int‟l Conf. Software Eng. (ICSE

‟06), 2006.

[3] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim,

“Duplicate Vulnerability Reports Considered Harmful;

Really?” Proc. IEEE 24th Int‟l Conf. Software Maintenance

(ICSM ‟08), 2008.

[4] J. Davidson, N. Mohan, and C. Jensen, “Coping with

Duplicate Vulnerability Reports in Free/Open Source

Software Projects,” Proc. IEEE Symp. Visual Languages and

Human-Centric Computing (VL/HCC ‟11), 2011.

[5] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection

of Duplicate Defect Reports Using Natural Language

Processing,” Proc. 29th Int‟l Conf. Software Eng. 2007

[6] A.J. Ko, B.A. Myers, and D.H. Chau, “A Linguistic Analysis

of How People Describe Software Problems,” Proc. IEEE

Symp. Visual Languages and Human-Centric Computing

(VL-HCC ‟06), 2006

[7] N. Bettenburg, S. Just, A. Schr€oter, C. Weiss, R. Premraj,

and T. Zimmermann, “What Makes a Good Vulnerability

Report?” Proc. 16th Int‟l Symp. Foundations of Software

Eng. (FSE ‟08), 2008

[8] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann,

“Information Needs in Vulnerability Reports: Improving

Cooperation between Developers and Users,” Proc. ACM

Conf. Computer Supported Cooperative Work (CSCW ‟10),

2010
[9] R.J. Sandusky and L. Gasser, “Negotiation and the

Coordination of Information and Activity in Distributed

Software Problem Management,” Proc. Int‟l ACM

SIGGROUP Conf. Supporting Group Work (GROUP ‟05),

2005

[10] D. Bertram, A. Voida, S. Greenberg, and R. Walker,

“Communication, Collaboration, and Vulnerabilities: The

Social Nature of Issue Tracking in Small, Collocated

Teams,” Proc. ACM Conf. Computer Supported Cooperative

Work (CSCW ‟10), 2010.

[11] R. Lotufo, Z.Malik, andK. Czarnecki, “Modelling the

„Hurried‟ Vulnerability Report Reading Process to

Summarize Vulnerability Reports,” Proc. IEEE 28th Int‟l

Conf. Software Maintenance (ICSM‟12), 2012.

[12] S. Mani, R. Catherine, V.S. Sinha, and A. Dubey, “AUSUM:

Approach for Unsupervised Vulnerability Report

Summarization,” Proc. ACM SIGSOFT 20th Int‟l Symp. the

Foundations of Software Eng. (FSE ‟12), article 11, 2012

[13] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the

Use of Automated Text Summarization Techniques for

Summarizing Source Code,” Proc. 17th Working Conf.

Reverse Eng. (WCRE ‟10), pp. 35-44, 2010

[14] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay

Shanker, “Towards Automatically Generating Summary

Comments for Java Methods,” Proc. 25th Int‟l Conf.

Automated Software Eng. (ASE ‟10), pp. 43-52, 2010

[15] Jyotsnamayee Upadhyaya, Namita Panda and Arup Abhinna

Acharya “Attack Generation and Vulnerability Discovery in

Penetration Testing using Sql Injection ” International

Journal of Computer Science and Engineering ,Volume-2,

Issue-3 ,E-ISSN: 2347-2693 , 2014

AUTHORS PROFILE

Vineetha Prakash, is currently doing her

M.Phil in Computer Science, Department of

Computer Science, AJK college of arts and

Science , Coimbatore, her research area

includes Knowledge and web Mining.

vpvprakash@gmail.com

mailto:vpvprakash@gmail.com

