

 © 2016, IJCSE All Rights Reserved 78

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-4, Issue-9 E-ISSN: 2347-2693

Web Resources Development Methdology Based on Web Composition

Using Ontology for User’s Optimal Goal

G.Narayanan
1*

and Pon Periasamy
2

1*

PG and Department of Computer Science, Nehru Memorial College, Trichy
2
PG and Department of Computer Science, Nehru Memorial College, Trichy

Available online at: www.ijcseonline.org

Received: 21/Aug/2016 Revised: 01/Sept/2016 Accepted: 15/Sept/2016 Published: 30/Sep/2016

Abstract— The proposed algorithm expands the meaning of a user’s goal using ontology then derives a group of keywords to

discover services and web composition are used to select the web services based on QoS to find the optimality solution of their

user goal. The efficiency of the web service matching and composition becomes more important than ever because of the vast

number of the web services. For this purpose we propose a web service composition algorithm based on the annotated ontology

using semantic matching to achieve exact service for user’s constraint. We design a resource graph to represent the semantic

relationship among Web resources. By analyzing the relations among Web resources and using ontologies, A semantic web

services would require careful usage combined technologies this semantic web service is realized to show that they ensure

interoperability. Four aspects of web services are presented 1) Standard of XML web services 2) Semantic annotation 3) Web

service composition 4) Performance Evolution. Our framework can generate ad-hoc processes for composing Web resources.

We have built a prototype to demonstrate that the repetitive tasks in the Web resources can be automatically and tracked and

the user can change simple Web resources into reusable services by annotating the data with them.

Keywords- Ontology, Service-oriented architecture, Service composition, Service discovery and Web services

1. INTRODUCTION

The word “ontology” was widespread quoted in the Artificial

Intelligence domain in recent years. A lot of definitions about

ontology are being proposed constantly. Most often quoted

definition is that Gruber proposed in 1993. “Ontology is a

formal, explicit specification of a shared conceptualization”.

In definition the “conceptualization” is the abstract model of

the phenomenon in existence, the word “shared” points out

the ontology is shared and belonged to the collective not

individual. The meaning of formal is machine can read and

understood the ontology. Ontology’s contribute to resolve

semantic heterogeneity by providing a shared comprehension

of a given domain of interest. Furthermore, the main

challenge of interoperability and data integration is still

ontologies matching. The work in semantic Web

demonstrates how ontologies can be used to address

interoperability problems at the application level.

Specifically, ontologies have been used during discovery to

express the capabilities services, as well as the requests for

capabilities. Ontologies are used to improve communication

between any user by Specifying the semantics of the symbolic

apparatus used in the communication process. More

specifically, Jasper and Uschold (1999) identified three major

uses of ontologies: (i) to assist in communication between

human beings, (ii) to achieve interoperability among software

systems, and (iii) to improve the design and the quality of

software systems. The clear definition of logic rules will let

ontology has stronger functions. The computer will

understand the meaning of web pages through linking

concepts to concepts under the ontology proposes a method

based on the annotated ontology to fulfill the semantic match,

but not to use it for composition. We not only annotate

ontology for semantic match but for the web service

composition. To annotate the ontology, we add two map type

variables “in” and “out” to ontology to store the annotation.

In the “in” set, the concept and the service id which has the

concept as input parameter is stored, in the “out” set, the

concept and the service id which has the concept as output

parameter is stored, their initial states are empty.

1.1 Web Composition Method

A method to compose a serial of web service to satisfy a

query based on the annotated ontology. When a service is

registered, it will be mapped to the concepts of the ontology.

When a query comes, we can get the corresponding web

services quickly by its input or output concepts, not need to

traverse all the web services in the service registry. The

method needs to preprocess the ontology[3] ,which can cost

some time and space ,but the time is only once when web

service is registered .With it we can save much time in

dynamic compose web services for any query.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 79

 1.2 Dynamic Composition Method:

Web service dynamic composition based on an annotated

ontology. The capability parameters of the registered web

services are used to annotate the domain ontology, when a

request comes, only the related web service according to the

annotated ontology will be matched or be composed[14].

With the method, the efficiency can be improved significantly

when a large number of web services exist.

1.4 Semantic Web Community:
The semantic Web community’s[21] responses to the

interoperability problem are based on the principles of

reasoning about ontologies and understanding how different

systems can work togather. The work in semantic web

services demonstrates how ontologies can be used to address

interoperability problems at the application level.

Specifically, ontologies have been used during discovery to

experess the capabilites of servicves, as well as the requests

for capabilities. Semantic web services seem to be a good

choice for loosely coupled architectures. Its success and its

popularity are mainly due on one hand to SOA and SOAP

protocols and on the other hand to semantic annotations as

follows:

Figure.1 Semantic Web services cartography

1.3 Semantic Annotation
 The semantic web services are at the convergence of

two signification fields of reaches which are technologies of

the internet and XML web services. The purpose of semantic

web services is to create a semantic web of services whose

properties, interfaces and effects are described in a non-

ambiguous and exploitable way by software agents. An

annotation assigns to an entity, which is in the text, a link to

its semantic description. A semantic annotation is referred to

ontology. The idea is to have data through the web defined

and linked in such a way that its meaning is explicitly

interpretable by software processes rather than just being

implicitly interpretable by humans [5]. Semantic annotation

can be applied to any web resources. The semantic

annotation as follows:

� SOA (Functional Interoperability): The SOA

principles are realized by web services standards and

technologies based on XML.

� SOAP protocol (Technical Interoperability): Web

protocols are usually allowed through a firewall and

the associated computational cost may be relatively

low, due to the possibility of selective of selective

encryption and/or signature of SOAP messages. By

using SOAP different applications can read and send

messages over HTTP to each other.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 80

� Semantic annotation (operational interoperability):

It facilitates semantic interoperability of data

because they refer to ontologies’ describing.

Semantically described, services will enable better

service discovery and allow easier interoperation and

composition. Research in semantic web has shown

that annotation with meta-data can help us to solve

the problem of inefficient keyword based search in

the current web. The concept of annotation can be

extended to web services to envision semantic web

services[20].

2. AN ONTOLOGY DEFINITION MODEL

 An ontology expresses common entities (e.g.,

people, travel, and weather), and the relations among those

entities. Ontology can be visualized as a graph that contains

nodes representing entities and edges representing relations

among the entities. . The entity “Travel” is related to four

more specific entities: “Transportation”, “Accommodation”,

“Tourist Attraction” and “Car Rental”.

Figure.2 An example of ontology for defining the entity “Travel”

For example, the goal for planning a trip can be expressed

using keywords, such as “Trip” or “Travel”. To derive the

tasks that achieve the specified goal, we analyze the semantic

meaning of the specified goal using ontologies. Ontologies

capture the information related to particular goals using

expert knowledge. For

example the ontology for the concept “Travel” lists relevant

concepts, such as “Flight”, “Hotel Reservation”, and “Tourist

Attraction”. To have a better understanding of the specified

goal, we search for existing ontologies that can expand the

meaning of a specified goal .Furthermore, we provide an

algorithm that analyzes the identified ontology to dynamically

discover services and compose an ad-hoc process to achieve

the specified goal. We take an ontology which matches with

the goal description as the input. The algorithm uses a

stepwise approach to discover and organize the Web

resources according to the level of abstraction[12]. The high

level entities in an ontology graph convey more abstract

meanings suitable for discovering Web resources offering

general purpose services. Such services allow users to receive

the desired Web resources.

2.1. REPRESENTING A RESOURCE GRAPH

We create a resource graph to represent Web resources and

the relations between Web resources. We consider the

resource graph as a semantic network model which consists

of entities and relationships. Entities in a resource graph

denote Web resources identifiable using URIs. A Web

resource may be linked to other Web resources by a set of

relations. We have identified three types of relations:

Data flow based relations: Data flow relations define the

flow of data between two or more resources. The data flow

relation is determined by matching the schema between the

input and output of methods in Web resources. We use link

specification [3] to describe the data flow based relation

between Web resources in a resource graph.

Transitions based relations:

The response of a Web resource contains next state transition

information. A user agent can decide next state based on the

semantics of the relations defined in the links available in the

response. The relations are used to recommend new Web

resources, identify similar Web resources, and define the

relationship between the Web resources. Similar to data flow

relations, we use link specification to describe the transition

based relations[7].

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 81

Figure.3 Architecture for personal web space

3. Exiting work and its algorithm

A query for “Travel from source to destination ,” Web

services for “Travel” may only provide limited services, such

as booking flight and train tickets and renting car,. In this

case, the end-users may need more specialized services for

transportation, accommodation, and tourist attractions. To

offer end-users with more options the keywords obtained are

travel, mode-of-transport, taxi, hotel, tourist-interest, and so

forth. The keyword “travel” derives from the service request;

the result is obtained by matching “travel” with domain

ontology and retrieving the related concepts. Any service

request raised is parsed syntactically and semantically to

identify the keywords .The service selection algorithm uses

the keywords and conditions the presence of functional and

nonfunctional properties of the web services[22]. We take

functional properties of request and web service then we

calculate the similarity between them. Name and textual

description of request and services are matched using

syntactic similarity function whereas inputs and outputs are

matched based on semantic similarity function. In exiting

three algorithm are interrelated keeps on decomposing the

abstract goal into a set of more concrete tasks as the

algorithm. traverses deeper in the path. In the second iteration

of our algorithm, our algorithm identifies tasks, such as

“Transportation”, “Accommodation”, “Tourist Attraction”,

and “Car Rental”. In the third iteration, our algorithm further

refines Accommodation task with more specific tasks, such as

“Budget Hotel” and “Luxury Hotel”. However, the entities,

such as class “Bus” and “Air”, do not have sufficient

information (e.g., attributes, subclass, sub-component,

equivalence entities, or instances) to discover new

services[17]. Therefore, their parent node “Transportation” is

not further decomposed to more specialized services

When these three algorithms are integrated to

achieve the goal, some inconveniences are identified here and

summarized as follows.

 1. The semantic matching cannot be achieved as a

single service.

2. Selected services with Qos are not based on the

user constraint.

3. To generate composition plan are not supported

automatically.

4. Qos service is not suitable for runtime.

5. It does not provide the optimal value in the

ranking based algorithms.

Existing three algorithms are interrelated to travel concept

for user goal . All three tasks are identified in the travel

program 1.Transport 2. Accommodation 3 tourist attraction.

 3.1 Identifying Task algorithm.
 These tasks has constrains for user requested annotated in

ontology. Using identify task algorithm to identify the

user defined constraints

Algorithm A Identifying Task List

Input: Ontology model for the goal

Output: A set of task associated with services

Initiate: var E= the entity which match the gold description

Procedure identifyTask (var E)

--

{

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 82

1. if E does not have attributes, direct subclass, sub-

components (described by part of relation), equivalent

entities, or instances

2. {

3. Return;

4. Use equation (1) and (2) in search service for E in

(ws_repository)*;

5. If (the number of matching services > 0)

6. {

7. Associate the matching service to E, and convert E

as a task // the ad-hoc process

8. Output task E;

9. }

10. Set(Er) = e0 which have a direct relation with E

11. If (the size of Set(Er) == 0)

12. {

13. return;

14. }

15. for each element Ei in Set(Er)

16 {

17. identifyTask(Ei);

18. }

19. }

Algorithm B. Searching for web service

 Searching to the web service is available for user request

and to response available in UDDI registry.

Input: Ontology entity e0

Output: relevant service list

Procedure SearchServices ()

--

1. {

2. entity (e0) = {e0} U {e1,e2,e3,…em} U attr (e0)

3. attr (e0) = {ae01, ae02,…ae0p} (1)

4. entity ei = {si1,si2,….sin}

5. entity_keywords (e0) = entity (e0) U (U
m

i=0 syn (ei))

// each entity has own set of synonyms

6. ws-keywords(si) = {t1,t2,….tz}

 // where sj is the service and ti tag of service

7. entity-keywords(e0) = ws-service (sj)

8. SIM= (#match keywords) | n

 // n is the number of tag description

9. Using the formula (2) and (3) using in sim

11. sort Sim (Rws1, Rws2, Rws3……Rwsn)

// sort the relevant service based on similarity

degree

12. if (Rws1 = Rws2)

// Rws1,Rws2 are relevant services in service

repository

13. {

14. Sort Qos (Rws1, Rws2)

15. return sort result (Sort list)

16. }

Algorithm C. Semantic matching (user define in

ontology match with web services)

The semantic matching algorithm is used to verify between

user request and web services with similarity functions.

Input: Goal Description, Task Description (option)

Output: Matching Ontology

Procedure Search Onto ()

1. {

2. var OntoSet = null;

3. gd = gd U { syn ki in gd } keywords in goal

description with synonyms

4. td = td U{ syn ki in td } keywords in task

 description with synonyms

 K(G) = gd ;

 K(T) = td;

5. for each ki in K(G)// keywords in goal description

 // Search for Ontologies with keywords

6. If Sementic match ();

7. add match in to OntoSet

8. }

9. end for

10. If OntoSet == 0

11. {

12. return null;

13. }

14. If OntoSet == 1

15. {

16. return 1 in OntoSet;

17. }

18. else

 // OntoSet contain more on Ontology

19. {

20. SIM(dec,Sort OntoSet (n)) in K(G) and K(T)

 // sort the selected ontology from similarity

 frequency of K(G)= gd, K(T)= td.

21. return Ontoset(top)

22. end else

23. }

4. Proposed Work and its Algorithm

A query for the goal for planning a trip can be expressed

using keywords, such as “Trip” or “Travel”. To derive the

tasks that achieve the specified goal, we analyze the semantic

meaning of the specified goal using ontologies. Ontologies

capture the information related to particular goals using

expert knowledge. For example the ontology for the concept

“Travel” lists relevant concepts, such as “Flight”, “Hotel

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 83

Reservation”, and “Tourist Attraction”. To have a better

understanding of the specified goal, we search for existing

ontologies that can expand the meaning of a specified goal.

Furthermore, we provide an algorithm that analyzes the

identified ontology to dynamically discover services and

compose to achieve the specified goal.

During the semantic matching a single web service cannot

support to achieve a task and it cannot to achieve user goal

also. The exiting three algorithms are integrated have to

implement with Web service composition to achieve for this

goal. Web composition is based on quality of service. The

Qos based on more than constrains it may me automatic

composition or dynamic composition These algorithms are

implementing or enhancing algorithm in rank based

algorithm are used to find the optimality of user goal. The

implemented algorithm can be used to support automatic or

dynamic and also get optimality rank based for user goal.

These solutions are called Pareto solutions. The QoS-aware

composition based on run-time values. They supported to

dynamic composition problem prior to execute the services,

it is necessary to find optimal composition.

4.1 Web Service Selection (the problem identified area)

The current web service architecture and semantic web efforts

address here problem of web service discovery and web

services selection. Discovery deals with finding a set of

services that corresponds to a predetermined user request

while selection deals with choosing a service between those

that are discovered. Moreover, selection seems to be the main

problem. In fact, if the discovery process is exhaustive, a very

large number of services may be found. Due to the number of

services, and consequently in many cases, a single service is

not sufficient to respond to the user's request and often

services should be combined through services composition to

achieve a specific goal. The composite services is starting to

be used as a collection of services combined to achieve a

user's request. In other words, from a user perspective, this

composition will continue to be considered as a simple

service, even though it is composed of several web services.

the problem of composing web services can be reduced into

four fundamental phases: The first one is planning, which

determines the execution order of the tasks, we consider here

a task as being a service functionality or a service activity.

The second one is discovery that aims at finding candidate

services for each task in the plan. The third phase aims at

optimizing services composition and finally the fourth

concerns execution.

The discovery process returns a set of candidate services from

which the subset of those belonging to the composition

should be extracted according to non-functional criteria (i.e.

cost, availability, reputation). In fact, discovery is a

prerequisite for selection, but selection is the main problem

The non-functional criteria are here characterized by the QoS

model presented in each web service. The QoS model has

more than one criterion to be evaluated. Thus, services

composition can be considered as a multi objective

optimization problem.

4.2 PROBLEM DEFINITION

Given a user request UR(T,QWV,C) , we need to find the

best composite services among the list of services that

satisfies the user request where

(i) T denotes a set of independent tasks , where ranges

from 1 to and denotes the number of tasks,

 (ii) QWV is QoS weight vector which contains user

preferences over QoS criteria:

 QWV= (qw1,qw2,qw3….qw6)

 (iii) c denotes the constraints specified by the user.

For example, a travel reservation scenario which is a typical

web service composition problem offers travel,

accommodation, and local transport rental services to the

customers. The user request consists of a set of tasks like

booking flight ticket, reserving hotel rooms, and renting a

cab. Atomic services like flight service, hotel service, and taxi

service are assigned to each task in the user request. Users

can specify the type of services and local constraints like QoS

preferences, global constraints, and other constraints like the

total amount the user wishes to spend for the trip.

Concerning our Travel problem For an example If a user

wants to travel, it is not sufficient to book a flight, but she

should also take care of reserving a hotel, renting a car,

getting entertained, and so on. Such composition is carried

out manually today, it means that the user needs to execute all

these services one by one and these tasks can be time and

effort consume. so consider that we can now have more than

task to be executed and over a hundred candidate services;

Thus, combining each task, respecting their restrictions and

respectively finding the service to execute the tasks can be

considered as a combinatory problem. Since we treat our

services composition as a combinatory problem it requires

optimization, so our Travel problem can be treated as an

optimization problem. Optimization problems require

basically two elements: a search space composed of potential

solutions and an objective function to be optimized. The

search space may be restricted by a set of constraints.

In our example of Travel problem. In order to achieve optimal

compositions we defined four main objectives that should be

optimized: cost, time, reputation and availability. Cost

represents the price of a service execution and Time is the

execution time of a service. Moreover, Availability is the

probability a service is “alive” and Reputation is the

trustworthiness of the service in a determined field. Another

important feature is that in a multi objective problem we do

not have only one optimal solution but a set of solutions.

Algorithm I : User preference based web service

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 84

ranking algorithm

/ UserReq: User request

// UserReqSTi: User request service type

// ti: Task involved in user request

// WSLi: List of web services in the registry

// Si: Web service

// SLi: Search List

// FLi: Filtered List

// QRLi: QoS Ranked List

// QWV: QoS weight vector

// QVW= (qw1,qw2,qw3,qw4,qw5,qw6)

// qw1: Cost Weight

// qw2: Success Rate Weight

//qw3: Frequency Weight

// qw4, : Response Time Weight

// qw5,: Reputation Weight

// qw6 : Availability Weight

//RSLi : Ranked Services List

Begin

 (1) For each task ti in UserReq

 (2) Discover(WSLi , UserReqSTi)

// check semantic matching

(3) For each service Si in SLi do

 (4) If(Si.Availability = = true)

 (5) SL.add(Si)

 (6) End if

 Else

 // Call Web service composition

 (7) Web service composition()

 (8) End For

 (9) QoS based Service Selection(SLi)

 (10) Compute QoS Rank(FLi)

 (11) Final Rank based Sorting (QRLi, QWV)

 (12) End For

 (13) Return RSLi

End

Algorithm II: QoS aware web service composition

algorithm (UR (T,QWV,C), RSLi)

Begin

 (1) Rank Services

 (1.1) Perform UPWSR for each task ti in T

 (1.2) Save the RSLi for each task ti in T

 (2) Store each RSLi in task tables

 (3) Compute Service Composition (SC) table

 (3.1) Generate all possible Composition plans by

taking Cartesian product of all the

task tables obtained in Step (2)

 (3.2) Save the Composition plans (CP) in Service

Composition Table

 (4) Calculate QoS Aggregated value for each CP in

Service Composition and save in

Composition Plan List (CPL)

 (5) Constraint Analyzer

 (5.1) Perform Constraint Analyzer(SC, C) for each CP

in CPL

 (5.2) Save composite services that satisfy constraints in

Filtered Composition Plan

 List (FCP)

 (6) Pareto Optimal based Selection

 (6.1) Perform Pareto Selection(FCP)

 (6.2) Save Composition Plans after filtering in Pareto

Optimal based Selected

 List (POSL)

 (7) Compute Aggregated QoS Rank for each CP in POSL

 (7.1) Evaluate all the Rank for each CP in POSL

 (7.2) Save the CP with Rank in POSL

 (8) Calculate Final rank(POSL, QWV)

 (8.1) Compute Final rank for all CP in POSL

 (8.2) Sort and save the Composition Plan in Ranked

Composition Plan List (RCPL)

based on Final Rank

 (9) Execute all the Composition Plan in RCPL

 (10) Get feedback and update Rep(Si)

Semantic matching and web composition are Implementing in

Algorithm I and II can be used to find an automatic and

dynamic solution for ranking optimal goal based on user ‘s

constrained.

4.3 Pareto Approach

Having several objective functions, the notion of “optimum”

changes, because in MOP, the aim is to find good

compromises (“tradeoffs”) rather than a single solution. We

can say that xr is Pareto optimal if there exists no feasible

vector yr which decreases some criterion without causing a

simultaneous increase in at least one other criterion.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 85

Table.1 Example of pareto optimal based selection

 We have archived through this proposed

enhanced ranking based algorithm to produce a web

composition for web services. Composition plans from the

composition plan repository are deleted periodically. Service

providers can register their service manually in the service

registry. This framework calculates Qos of those services

dynamically.

Possible compositions from the available web services.

Compositions Web services Availability

1 A-C-E 73

2 B-C-E 72

3 B-D-F 71

4 B-E-F 71

5 A-C-F 83

Table.2 Generate compositions from the available web

services

5. CONCLUSION

In this paper, we provide an approach that hides the

complexity of SOA standards and tools from end-users and

automatically composes services to help an end-user fulfil

their daily activities. We propose a tag-based service

description to allow end-users to understand the description

of a service and add their own descriptive tags. This paper

presents a framework for composing Web resources in a

personalized Web space. In the framework, Web resources

are described by a unified description schema and are soap

based web services. Heterogeneous Web resources hinder

search engines and users to discover suitable Web resources

for fulfilling users’ goal of daily activities.The proposed

approach dynamically composes web services and the

composition plans are generate automatically.

 In future we will improve our framework to

allow a user to share access through mobile environment In

our current implementation, the resource graph is created

from the user's request and updated their profile for current

web services, we plan to provide automatic approach to

identify the relations among the Web resources and generate

the resource graph for a given set of Web resources. We also

want to design case studies to evaluate the performance of our

framework for generating ad-hoc processes from a user’s

goal.

REFERENCES

[1]. R. Alarcón and E. Wilde. “RESTler: Crawling RESTful

services.” In Proceedings of the 19th international conference

on World Wide Web, WWW '10, pages 1051{1052, New

York, NY, USA, 2010. ACM.

[2]. A. Almonaies, J.R. Cordy, T.R. Dean, "Legacy System

Evolution towards Service-Oriented Architecture", Proc.

International Workshop on SOA Migration and Evolution

(SOAME 2010), Madrid, Spain, pp. 53-62.

[3]. A. Alowisheq, D. E. Millard, and T. Tiropanis, “EXPRESS:

EXPressing REstful Semantic Services Using Domain

Ontologies.” International Semantic Web Conference 2009:

941-948

[4]. M. Athanasopoulos and K. Kontogiannis, “Identification of

REST-like Resources from Legacy Service Descriptions,

WCRE 2010.

[5]. D. Beckett, B. McBride (editors), “RDF/XML Syntax

Specification (Revised),” W3C Recommendation 10

February, 2004

[6]. B. Upadhyaya, F. Khomh. Y. Zou, A. Lau and J. Ng, A

Concept Analysis Approach for Guiding Users in Service

Discovery, IEEE International Conference on Service-

Oriented Computing and Applications (SOCA'12) , Taipei ,

Taiwan.

[7]. Rajneesh Shrivastava, Shivlal Mewada and Pradeep Sharma,

"An Approach to Give First Rank for Website and Webpage

Through SEO", International Journal of Computer Sciences

and Engineering, Volume-02, Issue-06, pp (13-17), Jun -

2014

[8]. M. P. Carlson, A H. H. Ngu, R. M. Podorozhny, L. Zeng,

“Automatic Mash Up of Composite Applications,”

International Conference on Service Oriented Computing

(ICSOC) 2008, Sydney, Australia, December 1-5, 2008,

pages: 317-330

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 86

[9]. C. Engelke and C. Fitzgerald, “Replacing Legacy Web

Services with RESTful Services,” WS-REST 2010 First

International Workshop on RESTful Design

[10]. R. Ennals and D. Gay. “Building Mashups by Example”,

Proceedings of IUI (2008)

[11]. R. J. Ennals, M. N. Garofalakis, “MashMaker: mashups for

the masses,” Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, ACM.

[12]. Yahoo Pipes: Rewire the web, http://pipes.yahoo.com/pipes/

[13]. Animesh Shrivastava and Singh Rajawat, "An

Implementation of Hybrid Genetic Algorithm for Clustering

based Data for Web Recommendation System", International

Journal of Computer Sciences and Engineering, Volume-02,

Issue-04, Page No (6-11), Apr -2014

[14]. I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology

of the Grid: an Open Grid Services Architecture for

Distributed Systems Integration,” Technical report, Global

Grid Forum (2002)

[15]. Dublin Core Metadata Initiative, http://dublincore.org/, last

accessed on September 9, 2010

[16]. Facebook, http://www.facebook.com/, last time accessed on

August 22, 2011

[17]. R. Fielding. “Architectural Styles and The Design of

Network-based Software Architectures”. PhD thesis,

University of California, Irvine (2000)

[18]. Flickr, http://www.flickr.com/, last time accessed on Aug.

29, 2011

[19]. Gleaning Resource Descriptions from Dialects of Languages

(GRDDL),

http://www.w3.org/2004/01/rdxh/spec, lat

accessed on October 12, 2010

[20]. B. Upadhyaya, R. Tang and Y. Zou. An approach for mining

service composition patterns from execution logs. Journal of

Software Evolution and Process; DOI: 10.1002/smr.1565,

2011.

[21]. Hassina Nacer, Djamil Aissani, “Review: Semantic web

services: Standards, applications, challenges and solutions”,

Journal of Network and Computer Applications, Volume 44,

September, 2014 , Pages 134-151

[22]. Mallayya, D., Ramachandran, B., Viswanathan, S(2015) “An

Automatic Web Service Composition Framework Using

QoS-Based Web Service Ranking Algorithm”,The Scientific

World Journal, pp.1-14.

