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Abstract— In this paper, an approximate method to solve system of fractional differential equations analytically, fractional 

heat-like two-dimensional equation and stiff system of differential equations of nonlinear kind is obtained using variational 

iteration method (VIM). The results demonstrate that our approach is straightforward, effective and very simple. The numerical 

findings for different cases of problems are presented graphically. The outcomes reveal that the VIM is convenient, stable and 

performs extremely good in terms of simplicity and efficiency.  
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I.  INTRODUCTION  

The study of arbitrary order integral and derivative which 

generalize integer-order differentiation and unifies n-fold 

integration is called fractional calculus. A reasonably 

sufficient study of fractional calculus can be found in 

[Samko et al. (1993)] and some of its applications in 

[Oldham and Spanier (1974)] and [Podlubny (1999)]. The 

problems directly using exact solutions of nonlinear partial 

differential equations are important for mathematical 

physics, these nonlinear problems are frequently associates 

with nonlinear wave equations which emerge in various 

fields for instance hydrodynamics, fluid mechanics, solid 

state physics, biology, optical fibers and plasma physics to 

further use them in the practical life and to better understand 

these phenomena it is necessary to look for their more 

accurate solutions. The solution of nonlinear equations 

conveniently and accurately can be obtained easily due to the 

flexibility and ability of the suggested method. The fractional 

differential equations models of problems in fluid flow, 

viscoelasticity, mathematical biology, the nonlinear 

oscillation of earthquake [He (1998)], engineering [Ferreira 

et al. (2008)], bioengineering [Magin (2004)] and 

electromechanical and electrical systems [Debnath (2003)] is 

used to successfully describe Partial fractional differential 

equations. 

  In general, there does not exist any analytical 

method to give an exact solution for fractional differential 

equations, using perturbation methods or linearization only 

approximate solutions can be calculated. Various methods 

are known till now to solve fractional and system of 

fractional differential equations, some of them are Homotopy 

perturbation method [Odibat and Momani(2008)], Adomian 

decomposition method [Jafari and Gejji(2006), Patel 

et.al.(2018)], Homotopy analysis method [Zurigat et al. 

(2010)]. The VIM was first proposed by [He (1998)] and has 

been effectively used in various problems like partial 

fractional differential equations of linear kind arising from 

fluid mechanics[Momani and Odibat (2006)], quadratic 

Riccati differential equation[Abbasbandy (2007)], parabolic 

partial differential equations [Javidi and Golbabai (2008)], 

parabolic integro-differential equations [Dehghan and 

Shakeri (2008)] occurring in heat conduction of  materials, 

the generalized pantograph equation and wave like equations. 

The VIM has been turned out to be a strong mathematical 

tool for different kind of nonlinear and linear problems [Li 

Yun-dong and Yang Yi-ren (2017)] used VIM for conveying 

fluid pipe’s vibration analysis, [Ghaneai and Hosseini 

(2016)] solved differential-algebraic equations through VIM, 

[Chen et al. (2017)] applied VIM to analyze free vibration 

problem of the rotating tapered Timoshenko beam. VIM 

needs no transformation or perturbation, discretization, 

linearization unlike the conventional numerical numerical 

methods. The implementations of the VIM methods are 

illustrated by [Ali and Malik (2014), Aski et. al. (2014), 

Chang (2016), Di Paola et. al., (2013), Siddiqi and Iftikhar 

(2015), Salkuyeh and Ali (2016)]. Some numerical 

illustrations are given to show the simplification and 

accuracy of the proposed algorithm. Some essential 

definitions and characteristics of fractional calculus theory 

are given which are used further for getting solutions.  

The reliability and validity of this technique are 

tried by its relevance in different nonlinear fractional 



  International Journal of Computer Sciences and Engineering                                      Vol.6(8), Aug 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        798 

differential equations, and the obtained solutions demonstrate 

that the proposed method is better in terms of accuracy and 

efficiency.  

The paper is structured as follows, Section I 

contains the introduction of fractional calculus, Section II 

contain description of the VIM, Section III outlines the 

fundamental properties and definitions of fractional calculus, 

Section IV describes convergence and relevance of by 

numerical examples contain the numerical results, Section V 

presents the conclusion.  

II. VARIATIONAL ITERATION METHOD 

Variational Iteration method is the method of 

developing a correction functional using Lagrange multiplier, 

and the Lagrange multiplier is chosen so that its correction 

solution is better than the trial function or the initial 

approximation.  We will take the subsequent general 

nonlinear system to demonstrate the fundamental concept of 

the VIM[Soltani and Shirzadi(2010) ] 

 [ ( )] [ ( )] ( ),L v u N v u f u   (1)   1  

where ( )f u  is a given continuous function, N  is a 

nonlinear operator and L  is a linear operator. We may form 

a correction formula  using VIM  as follows: 

 1

0

( ) ( ) ( )[ ( ) ( ) ( )] ,

u

n n n nv u v u s Lv s Nv s f s ds      (2) 

where 
nv  is treated as a restricted variation (the subscript ' 'n  

denotes the thn  approximation) i.e. 0nv  and
0 ( )v u is an 

initial approximation with possible unknowns and 

Lagrangian multiplier   is calculated optimally via 

variational theory. 

The consecutive iterations ( ); 1,nv u n  of the 

solution ( )v x  will be readily accomplished with the help of 

calculated Lagrangian multiplier and by taking any selective 

function 
0 ( )v u  therefore; the exact solution is acquired as 

 ( ) lim ( )n
n

v u v u


  (3) 

III. FRACTIONAL CALCULUS  

 

In the last two centuries many studies and 

definitions of fractional calculus have been proposed which 

includes Weyl, Riemann-Liouville, Nashimoto and Caputo 

Compos, Reize fractional operators. A concise explanation of 

the fractional calculus definitions which are required for the 

further development is given below: 

 

Definition 3.1. A real function ( ), 0,h u u  is supposed to be 

in a space ,C  for a real number ( )r   such that 

1( ) ( )rh u u h u where 1( ) [0, ),h u C  and is supposed to be in 

bC
 space. if ( ) , .mh C b N    

 

Definition 3.2. The Riemann-Liouville fractional integral 

operator of order 0  , of a function h C , 1  , is 

represented by 

1

0

1
( ) ( ) ( )

( )

u

R h u u t h t dt 



 
   , 0, 0,u    

 
0 ( ) ( )R h u h u   (4) 

Some of the characteristics of the operator R  are: 

[Podlubny (1999)] 

For , , 0, 1bh C       and 1   , 

1.  
 

 
1

(1 )
R u a u a

  


 

 
  

  
 

2. ( ) ( )R R h u R h u      

3. ( ) ( )R R h u R R h u    . 

 

Definition 3.3. The fractional derivative of ( )h u
 
in Caputo 

sense is characterized as: 

 
1

0

1
( ) ( ) ( ) ( )

( )

u

b b b bD h u R D h u u t h t dt
m

  



    
      (5) 

for 11 , , 0, bb b b N u h C       . 

The two basic properties of the Caputo’s fractional derivative 

are also require here [Gorenflo and Mainardi(1997)]. 

 

Definition 3.4. If 1 ,b b b N    , 1

bh C and 1  , 

then ( ) ( ),D R h u h u     

and 

 

1
( )

0

( )
( ) ( ) (0 ) , 0.

!

kb
k

k

u a
R D h u h u h u

k

 







    (6) 

The Caputo fractional derivative is used here since 

it allows conventional boundary and initial conditions to be 

included in the formulation of the problem. 

 

Definition 3.5. Caputo time fractional derivative operator of 

order 0  ; for the smallest integer ' 'b  that exceeds   is 

given as follows 

 

1

0

1 ( , )
( ) , 1

( )
( , )

( , )
, .

t b
b

b

t

b

b

u
t for b b

b t
D u t

u t
for b N

t





 
 







 
 

   
  

 


 
 


 (7) 
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We can consult [Podlubny (1999)] for mathematical 

properties of fractional integrals and derivatives. 

IV. NUMERICAL RESULTS 

We test both the convergence and accuracy of VIM 

utilized for the fractional systems of differential equations, 

by implementing it to the following problems. In this 

example, the exact solution of the system is not known, so to 

check the validity of the method, we define residual ( )bE r  

as follows: 

 
1( ) ( ( ) ( ))b b bE u u u u u   (8) 

Example 1: Let us consider the following fractional two-

dimensional heat-like equation [(Golbabai and Javidi(2007))] 

 ( , ) ( , ) ( , , ),t x x y y x yr r r A x y r B x y r r x y t        (9) 

where ( , ) sin sinA x y k kx ky
 
and ( , ) cos cosB x y k kx ky  

over the region [0,1] [0,1]    and 0 1t  with the 

following boundary conditions 

      
(0, , ) sin , (1, , ) (1 )sin , 0 1, 0

( ,0, ) sin , ( ,1, ) (1 )sin , 0 1, 0

r y t t r y t y t y t

r x t t r x t x t x t

     

     
  

with initial condition ( , ,0) sin cos 0 , 1r x y kx ky x y   . 

The exact solution  1   was found to be  

2( , ) sin cos .tr x t e x y  

For this problem, making the above correction functional 

stationary, and noting that 0nu   according to VIM, we 

obtain a correction functional as follows: 

   

1

0

2 2

2 2

( , , , ) ( , , , ) ( ) ( , , , )

( , , , ) ( , , , ) ( , ) ( , , , )

( , ) ( , , , ) ( , , , ) .

t

n n n

n n n

n n

r x y z t r x y z t s r x y z s
s

r x y z s r x y z s A x y r x y z s
xx y

B x y r x y z s r x y z s ds
y






 
  



  
 

 


  

 



 (10)
 

For 1  , we obtain the following stationary condition for 

Eq. (10) 

 1 ( ) 0, ( ) 1 0s tt s 
      (11) 

The Lagrange multiplier ( ) 1s t s     is obtained from Eq. 

(11) so we attain the iteration formula given as follows: 

 

1

0

2 2

2 2

( , , , ) ( , , , ) ( 1) ( , , , )

( , , , ) ( , , , ) ( , ) ( , , , )

( , ) ( , , , ) ( , , , ) .

t

n n n

n n n

n n

r x y z t r x y z t t s r x y z s
s

r x y z s r x y z s A x y r x y z s
xx y

B x y r x y z s r x y z s ds
y





 
    



  
 

 


  

 



 (12) 

substituting the initial approximations 

0 ( , , ) ( , ,0) sin cosu x y t u x y k x k y  , in Eq. (12), the various 

iterates are given as follows 

 

0

1

2 2 2

2

3 2 2
2

3

2 3 2

( , , ) sin cos ,

( , , ) (1 2 )sin cos ,

( , , ) (1 2 ( 1))sin cos ,

4 2 2
( , , ) 1 6 6

3 (4 2 ) (3 )

12 8 4
sin cos ,

(4 ) (4 ) (4 )

r x y t kx ky

r x y t t kx ky

r x y t k t t k t kx ky

t t t
r x y t t t

t t t
kx ky

 

  

 



  

 

  



 

     


     

   


   
      

 

On taking 1,k   Fig. 1 shows the fourth order approximate 

solution 4 ( , , )r x y t  for 1.   

 

 
Figure 1. The surface produced from 4 ( , , )r x y t  of variational 

iteration method for the parabolic partial differential equation with 
1.   

 

Example 2 The one-dimensional inhomogeneous fractional 

linear Burgers equation given by [Sakar et al. (2012)] 

 
2 2

2

2
2 2, 0 1, 0, ,

2 (3 )

r r r t
x t x R

xt t

 






  
        
   

    (13) 

with initial condition 

 2( ,0)r x x   (14) 

Applying VIM, the following iteration formula is attained 

 

2

1 2

0

2

( ) ( ) ( ) ( , , , )

2
( , , , ) 2 2

2 (3 )

x

n n n n

n

r x r x r s r x y z s
s t

t
r x y z s x ds

x













  
  

 


    
   


 (15) 

using the initial approximation, in (15), the various iterations 

are given as follows 
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2

1 0 0 02

0

2

2 2

1

2

2 1 1 1 12

0

2

( ) ( ) ( ) ( , , , ) ( , , , )

2
2 2

2 (3 )

( ) (2 2) 2 2 ,
( 1)

( ) ( ) ( ) ( , , , ) ( , , , )

2
2 2

2 (3 )

x

n

x

r x r x r s r x y z s r x y z s
xs t

t
x ds

t
r x x t x x t t

r x r x r s r x y z s r x y z s
xs t

t
x

























   
   

 


   

  

     
 

   
   

 


  

 





2 3
2 2

2 ( ) ,...,
8 4 (3 )

ds

x x
r x x t










   
 

 

The approximate solutions ( )nr x  will converge, to the exact 

solutions ( )r x  for 1   as .n  ( ) lim ( )n
n

r x r x



 

 

2 2( ) .r x x t 
  

Example 3: In this example take the following system of 

nonlinear chemical reaction [Hell et al. (1972), Ganji et 

al.(2007)] 

 

*

2

*

2

*

,

, 0 1,

,

D r r

D s r s

D t t









 

   



 (16) 

where Caputo fractional derivative of order 
 
is D , initial 

conditions (0) 1, (0) 0, (0) 0r s t   . 

According to the VIM, the nonlinear expressions have to be 

measured as a restricted variation, so the correction 

functional is given as follows: 

 

1 1

0

2

1 2

0

2

1 3

0

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) .

x

n n n n

x

n n n n

x

n n n n

r x r x s r s r s ds
s

s x s x s s s r s s s ds
s

t x t x s t s s s ds
s

























 
   

 

 
    

 

 
   

 







 (17) 

where 1 2( ), ( )s s   and 3 ( )s  are general Lagrange 

multipliers, and ( ), ( )n nr s s s  denote the restricted variations, 

i.e. 
2( ) 0.n nr s s  

 
Making the above correction functional 

stationary and using 
2( ) 0n nr s s   ; we have 

 

1 1

0

1 2

0

1 3

0

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) .

x

n n n

x

n n n

x

n n n

r x r x s r s ds
s

s x s x s s s ds
s

t x t x s t s ds
s













   

   

   







 
   

 

 
   

 

 
   

 







 (18) 

we acquire the subsequent stationary conditions on 

integrating (18) by parts and putting 1   

 1 2 3

1 2 3

( ) ( ) ( ) 0,

1 ( ) 1 ( ) 1 ( ) 0.
s x s x s x

s s s

s s s

  

  
  

    

     
  (19) 

Solving Eq. (19), the Lagrange multipliers are obtained as 

1 2 3( ) ( ) ( ) 1.s s s       

Thus, the subsequent iteration formulae is attained 

 

1

0

2

1

0

2

1

0

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) .

x

n n n n

x

n n n n

x

n n n n

r x r x r s r s ds
s

s x s x s s r s s s ds
s

t x t x t s s s ds
s



















 
   

 

 
    

 

 
   

 







 (20) 

substituting initial approximations 0 0 0(0) 1, (0) 0, (0) 0r s t    

in Eq. (20) the various iterates are given as follows 

  

2 2

1 2

2 3 2

1 2

3

1 2

( ) 1 , ( ) 1 2 ,...,
2 (3 )

( ) , ( ) 2 ,...,
2 2 (3 )

( ) 0, ( ) ,...
2

x x
r x x r x x

x x x
s x x s x x

x
t x t x













     
 

    
 

 

              

(21) 

The iteratives ( ),s ( )n nr x x  and ( )nt x represent the 

approximate solutions. Fig.2 shows the three respective 

residuals 8E  of the eighth order for 1.0   whereas the 

Fig.3 depicts the three residuals 4E  of fourth order for 

1.0   and 0.99.   
 

0.2 0.4 0.6 0.8 1.0

4. 10 6

2. 10 6

2. 10 6

4. 10 6

6. 10 6

8. 10 6

 
 

 

Figure 2. Residuals for the eighth order approximate 8 , 1.0.E  
 

 

 

u  

v  

w  
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w  

0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

0.2

0.4

 
Figure 3. Residuals 4E  smooth line: 1.0  , dashed line: 

0.99  . 

 

Example 4 Consider the following fractional stiff system of 

nonlinear differential equation: 

 
2

*

2

*

102 100 ,

,

D u u v

D v u v v





  

  
 (22) 

subject to the initial condition; 

 (0) 1 (0) 1u v   (23) 

For 1.0;  the accurate solution of this arrangement is 

2( ) , ( )x xu x e v x e   . Using VIM, we derive the correction 

functional as 
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
   




    







(24) 

where restricted variations are ( ), ( )n nu s v s and 2 ( )nv s , and 

1( )s  and 2 ( )s  are Lagrangian multipliers, i.e. 

2( ) ( ) ( ) 0.n n nu s v s v s      

Again the general Lagrange multipliers 1( )s  and 

2 ( )s  are found to be -1, thus giving the various 

approximations as 
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For 1,   the solution is given by 
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0 0

0 0

( 2 )
( ) lim lim ,

!

( )
( ) lim lim ,
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m m

mn n
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m
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 
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
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 

 

As n , the approximate solutions nu  and nv  tend to 

exact solutions ( )u x  and ( )v x  respectively. 

V. CONCLUSIONS  

In this paper, the variational iteration method is utilized to 

get answers for systems of fractional differential equations of 

physical importance. The given numerical illustrations show 

that the variational iteration method is a very efficient and 

powerful method for finding exact and approximate solutions 

of high exactness for large number of problems and 

discretization of variables is not necessary. The numbers of 

iterations required to get the satisfactory result are very less, 

fractional approximate solutions converge to the exact 

solutions as fractional order derivative   tends to their 

respective integral values thus demonstrating that the 

fractional order approximate solutions give a genuinely good 

idea of the probable exact solutions of the fractional systems.  
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