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Abstract— Fuzzy set theory and rough set  theory are two formal mathematical tools to handle vagueness, imperfection or 

incompleteness in data. Fuzzy rough set theory is an embodiment of the prime features of both the theories. This hybrid theory 

has been proved to be an effective tool for data mining, particularly for feature selection. In this paper, generalized fuzzy rough 

approximations based on divergence measure of fuzzy sets in an information system is defined using a fuzzy implicator and a 

fuzzy t-norm. Also, the properties of the fuzzy rough approximations are investigated. Further, an algorithm for feature 

selection using the fuzzy boundary region of the proposed approximations is presented and experimented with twelve real data 

sets. 
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I.  INTRODUCTION  

In this digital era, the extraction of useful knowledge from a 

huge amount of raw data is a great challenge[1,2,3]. Both 

fuzzy set theory[4] and rough set theory[5]  address the 

problem of vagueness, imperfection or incompleteness in 

data. The successful applications of these theories in various 

fields have lead to a hybrid theory known as fuzzy rough set 

theory.  

Fuzzy rough set theory has been successfully applied in 

feature selection[6]. Many different approaches to fuzzy 

rough sets are available in the literature. Most of the 

definitions are based on fuzzy relations[7,8,9,10,11]. The 

concept of divergence based fuzzy rough sets is introduced 

by T. K. Sheeja and A. Sunny Kuriakose[12]. In this paper, 

the generalized divergence based fuzzy rough lower and 

upper approximations of a fuzzy set in a fuzzy information 

system are defined using the a fuzzy implicator and a fuzzy t-

norm.  The properties of the proposed approximations are 

investigated. Further, an algorithm for feature selection using 

the fuzzy boundary region is presented. The proposed 

algorithm is implemented using an OCTAVE program and 

experimented with twelve real data sets. 

The rest of the paper is structured as follows: Section II 

recalls some basic concepts related to fuzzy set theory and 

fuzzy rough set theory. The generalized fuzzy rough 

approximations based on divergence measure in a fuzzy 

information system is defined in section III and their 

properties are studied. Section IV describes an algorithm for 

feature selection using the fuzzy boundary region in the 

proposed. The experimental results of the application of the 

proposed algorithm to twelve real data sets is presented in 

Section V. The conclusion and future work are given in 

section VI. 

II. RELATED WORK  

In this section, some basic concepts related to fuzzy rough 

set theory are recalled. Further details of fuzzy set theory and 

rough set theory can be found in [13,14]. 

A. Fuzzy implicators 

A fuzzy implicator[10] is a function                      
such that  (   )     (   )   (   )   (   )   . The 

implicator   is called a border implicator iff  (   )    , 

        . The implicator   is said to be left monotonic if it 

is decreasing on its first argument and right monotonic if it is 

increasing on its second argument.  

 Let  ,   and   be a fuzzy t-norm, t-conorm and a negator 

respectively. Then, the implicator  (   )     ( )    is 

called an S-implicator[13]. If  is continuous, then the 

implicator  (   )                (   )     is called 

an R - implicator[13]. If   and   are dual with respect to  , 

then  (   )     ( )  (   )  is an implicator known as a 

QL implicator[13]. 

B. Divergence measure 

Let  ( ) be the family of all fuzzy sets on U. Then a 

function    ( )   ( )        is called a  divergence 

measure[15] if and only if          ( ), 

i.  (   )   (   ) 
ii.  (   )    
iii.      (       )  (       )   (   )   
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C. Fuzzy rough sets 

 Let U be a nonempty set of objects and  be a fuzzy 

equivalence relation on  . then, the pair (   ) is called a 

fuzzy approximation space. The fuzzy rough lower and upper 

approximations of a fuzzy subset     defined by Dubois 

and Prade[7] are given by 

   ( )( )                 (   )   ( )      (1) 

  ( )( )               (   )   ( )   (2) 

  Radzikowska and Kerre[10] generalized this definition by 

replacing the max and min operators by a border implicator  

   and a t-norm   respectively.        

   ( )( )               (   )   ( )  (3) 

  ( )( )             ( (   )   ( )  (4) 

  Afterwards, many extensions and generalizations of fuzzy 

rough approximations have been proposed  by many authors 
[8,11,16,17,18]. A review of the different approaches to 

fuzzy rough set is presented in [19]. 

D. Feature selection using fuzzy rough sets 

Fuzzy rough set theory has been successfully applied to 

feature selection. A number of papers were authored by 

Jensen and Shen[20,21,22] in which they develop a fuzzy 

rough quick reduct algorithm. Another approach to fuzzy-

rough feature selection is to use fuzzy entropy as a criteria 

for feature selection[22]. Algorithms based on discernibility 

matrix to compute the attribute reducts are also proposed by 

many authors[9,23]. Fuzzy boundary region based feature 

selection methods are also there in the literature[23,24,25]. 

III. DIVERGENCE BASED GENERALIZED FUZZY ROUGH 

APPROXIMATIONS 

Let (     ) be a fuzzy information system, where   is a 

nonempty set of objects,   is the set of fuzzy conditional 

attributes and   is the set of decision attributes. If      , 

then each object      can be associated with a fuzzy set  

    on  , with membership function  

   
( )  {

 ( )           
           

                   (5) 

Definition 3.1: Consider (     ), with               ,  

               and               . Let   (   )  

be a divergence measure of fuzzy sets. Then, the divergence 

matrix of   with respect to     is defined as 

   [   ]   
, where      (   

    
),                .(6) 

Remark 3.2: If the range of  δ  is not a subset of        , then 

the normalized divergence matrix may be considered where 

the matrix entries are given by     
  

   

      (    )
 . Therefore, 

without any loss of generality, it may be assumed that 

        ,                    . 

Definition 3.3: Let (     ) be a fuzzy information system. 

Consider a border implicator   and a t-norm  . Then, the 

divergence based generalized fuzzy rough lower and upper 

approximations of a fuzzy set   on   with respect to the 

divergence measure  δ  are defined         as 

   ( )(  )                      (  )  (7) 

  ( )(  )                      (  )  (8) 

respectively. 

Next, we will show that the proposed approximations are 

fuzzy sets on  . 

Proposition3.4: The divergence based generalized fuzzy 

rough lower and upper approximations of a fuzzy set   on   

are fuzzy sets on  . 

Proof: Clearly,   (  )       ,       and          , 

                . Again, the range of the implicator   is a 

subset of [0,1]. Therefore,   ( )(  )          . Similarly,   

  ( )(  )              . 

  The properties of the proposed approximations are given in 

the following theorems. 

Theorem3.5: The general properties of the fuzzy rough lower 

and upper approximations with respect to   are as follows: 

i.  ( )      ( )      ( ) 

ii.  ( )     ( ) 

iii.  

a.  ( )                              

b.  ( )      

iv.  
a.      ( )   ( )                          

b.      ( )   ( )  
v.  

a.  ( ̂)   ̂                                   

b.  ( ̂)   ̂          

 Proof: 

i.   ( )(  )                    (  )  

                     (  )    
                 (  )              

            (  )      , as   is a border implicator 

Also,    ( )(  )                    (  )  

                     (  )   
                (  )  
            (  )        , since  (   )    

Thus,   ( )     ( )     ( ). 

ii. By property (1),   ( )    . Also,    ( ). 

Hence,  ( )   . Again,   (  )         . 
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So,           (  )            . 

Now, as    is an increasing function, the value of  

           will be the supremum, when (     ) 

will be the maximum. The maximum value of  

(     ) is 1. So,    ( )(  )                . 

Thus,    ( )     ( ). 

iii.  

a. We have,    (  )         .  

So,  [        (  )]            ,       . 

If     is left monotonic, then             will be 

minimum when  (     )  is maximum. Hence,  

  ( )(  )           [       ] 

                           ,       . 

Thus,   ( )     . 

b.   ( )(  )            [         (  )] 

           [        ] 

          [      ]   . 

Thus,   ( )    . 

iv.  

a. If    , then   (  )     (  )      .  

So, if     is right monotonic, then        

  [        (  )]    [        (  )]. 

Therefore,          [        (  )] 

                                                 (  ) . 

Thus,   ( )     ( ) . 

b. By definition,    is an increasing function. 

Also,    (  )    (  )      . So, 

 [        (  )]   [        (  )]      . 

Therefore,           [        (  )] 

                                                 (  ) . 

Thus,   ( )    ( ) . 

v.  

a. For all fuzzy constants  ̂ ,   ̂(  )         . If 

   is left monotonic,           ̂(  )   decreases 

as (     )  increases. Therefore, the infimum 

corresponds to the maximum value of  (     ), 

which is 1. Thus,   ( ̂)(  )           . 

Thus    ( ̂)   ̂            . 

b. Since,   ̂(  )          and   is an increasing 

function, the supremum of           ̂(  )   

corresponds to the maximum value of  (     ), 

which is 1. Hence,          [       ]   .  

Therefore,  ( ̂)   ̂         . 

Corollary 3.6: All S-implicators and R-implicators satisfy 

properties (i) to (v) and all QL implicators satisfy properties  

(i), (ii), (iiib), (iv) and (vb)  of theorem 1.  

Proof:  

The result follows directly from the fact that all S-implicators 

and R-implicators are hybrid monotonic and all QL-

implicators are right monotonic. 

 

Lemma 3.7: If   is an involutive fuzzy complement, then  

        (  )           (  )  , where   is an index set 

and                 . 

Proof:   is a decreasing function on      . Therefore,  we 

have,       (  )      (      (  ))   (  )     . 

This means that   (      (  ))  is an upper bound for the set  

  (  )      . Let k be any upper bound for  this set. Then 

   (  )     . Since   is decreasing and involutive, 

 ( )         . Hence,  ( )        (  ) . Therefore,  

   (      (  )). Thus,  (      (  )) is the least upper 

bound. That is,  (      (  ))          (  ) . 

Theorem 3.8: Consider a fuzzy t-norm  , a fuzzy negator 

 and a fuzzy implicator  . If  ( (   ))   (   ( )) , 

then     ( ), 

i. ( (  ))   ( )     ( )  

ii. ( (  ))   ( )     ( )  

Proof:  ( (  )) (  )                         (  )  

                   (  (  ))   

                    (  (  ))   

                    (  (  ))  , by assumption 

                   (  )  

    ( )(  ) 

Therefore, ( (  ))   ( )     ( ) 

Similarly, ( (  ))   ( )     ( ). 

Theorem3.9: Let  (     )  be a dual triple, where    is a 

fuzzy t-norm,    is a fuzzy t-conorm and     is an involutive 

fuzzy complement such that    and     are dual with respect 

to   . Then the divergence based fuzzy rough lower and 

upper approximations are dual to each other if the impicator 

is the S-implicator determined by the fuzzy t-conorm   . 

Proof:  ( (  )) (  )                        (  )  

                    (  (  ))   

                    (  (  ))   

                    (  (  ))  ,  

                   since   and     are dual w.r.t    

                    (  )  

    ( )(  ) 

Corollary3.10: If   ,   and   represent the standard fuzzy 

intersection, union and complement respectively and   is the 
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S-implicator based on  . Then, the divergence based fuzzy 

rough lower and upper approximations are dual to each other. 

Theorem3.11: Let (     ) be a dual triple, where   is a 

fuzzy t-norm,    is a fuzzy t-conorm and     is an involutive 

fuzzy complement such that    and     are dual with respect 

to   . Then the algebraic properties of the fuzzy rough lower 

and upper approximations with respect to  δ  are given 

below: 

i. If      (   )     (   )  (   ) , then 

 (   )    ( )   ( )  

ii. If      (   )     (   )  (   ) , then 

 (   )    ( )   ( )  

iii.   (   )    ( )    ( ), if   and    satisfy 

 (   (   )   ( (   )  (   ) 

iv.  (   )   ( )   ( ), if   and   satisfy 

distributive laws. 

Proof 

i.   (   )(  )                       (  )  

                   (  (  )   (  )  

           (        (  )  (         (  )  

           (        (  )   

         (        (  )  

  (  ( )(  )   ( )(  )) 

   ( )  ( )(  )) 

Therefore,  (   )    ( )   ( ) 

ii.   ((   ))
(  )                     (   )(  )  

                   (  (  )   (  )  

            (        (  )  (        (  )  

            (        (  )   

         (        (  )  

  (  ( )(  )   ( )(  ))  

   ( )  ( )(  ))  

Thus,  (   )    ( )   ( ) 

iii.   (   )(  )                       (  )  

                   (  (  )   (  )  

            (        (  )  (        (  )  

            (        (  )   

        (        (  )  

  (  ( )(  )   ( )(  ) ) 

   ( )  ( )(  )). 

Thus,   (   )    ( )    ( ) 

iv.   ((   ))
(  )                    (   )(  )  

                   (  (  )   (  )  

            (        (  )  (         (  )  

             (        (  )   

         (        (  )  

  (  ( )(  )   ( )(  )) 

   ( )  ( )(  ))  

Corollary3.12: If  ,   and   are the standard fuzzy 

intersection, union and complement respectively and   is the 

S-implicator based on  . Then,  

i.  (   )    ( )   ( ) 

ii.  (   )    ( )   ( ) 

Theorem3.13: If    and    are two divergence measures on  

 ( ) with   (   )     (   ) ,        ( ) , then  

  ( )     ( ) 

Proof:   (   )    (   ),        ( )    
     

   

     
       

   

          (    
     (  )) 

         (    
     (  )) 

    ( )(  )       ( )(  ) 

Thus,   ( )     ( ). Similarly,   ( )     ( ) 

IV. FEATURE SELECTION USING FUZZY BOUNDARY 

REGION 

This section describes an application of the divergence based 

fuzzy rough approximations to feature selection. A feature 

selection algorithm using fuzzy boundary regions of the 

decision classes is presented. Both the lower and upper 

approximations are taken into consideration.  

Consider an information system having               , 
               and               . Assume that all 

the conditional attributes are fuzzy. The real valued 

conditional attributes can be converted into fuzzy sets by the 

transformation   ( )  
   

   
 , where             ( )  and  

            ( ). 

For crisp decision attributes, the characteristic functions of 

the equivalence classes serve as the membership functions of 

the decision classes. In [12], a feature selection method using 

the divergence based fuzzy positive region is presented. The 

fuzzy positive region may be considered as an expression of 

the certainty of the membership of an object to a given class. 

Meanwhile, the boundary region gives information regarding 

the uncertainty of the membership of an object to a concept. 

This information is also used to select relevant features in an 

information system. 

Definition4.1: The divergence based fuzzy boundary region 

of a fuzzy set   on   with respect to the attribute subset   of 

  is defined as 

    ( )(  )     ( )(  )     ( )(  ). (9) 
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Definition4.2: The  uncertainty degree of a fuzzy set   on   

with respect to   is given by 

  ( )   
∑     ( )(  )

 
   

 
. (10) 

Definition4.3: The total uncertainty degree of the decision 

classes in a decision system with respect to P is given by 

  ( )  ∑    ( )    ⁄  (11) 

Algorithm4.4: The algorithm for finding the total uncertainty 

degree of D with respect to    , 

1. Input the decision table and       

2. Input   and  . 

3. Find the divergence matrix      

4. Find the decision classes    ⁄               
5. For           ,             , find      (  )

(  ) 

6. Compute    ( ) 

Algorithm4.4: The following is the algorithm to find the set 

of features to be selected for the decision table reduction. 

1. Input the fuzzy decision system 

2. Initialise               ,      

3. For each        , generate the divergence 

matrix with respect to       .  
4. Calculate the the total uncertainty degree of  ,  

       
( )  for each  each        . 

5. Find the attribute     that makes         
( ) the 

minimum. 

6. When         
( )    ( ), assign 

                    . 

In the first stage, the uncertainty value is computed n times, 

where n represents the number of conditional features in the 

data set. The feature with lowest uncertainty value is selected 

and the process is repeated for pairs of the selected feature 

with the remaining (n-1) features. In the worst case, this 

process is terminated when the whole feature set has been 

exhausted. Hence, the maximum possible number of 

computation of the total uncertainty value is   (   )  
(   )         (    )  . Thus, the maximum time 

complexity of the proposed algorithm is   (  ) . Also, at the 

initial stage, n divergence matrices are computed and stored 

corresponding to each individual features. The space for all 

the subsequent matrices and local variables can be reused. 

So, the space complexity of the proposed algorithm is   ( ). 

V. EXPERIMENTAL RESULTS 

The results from the experimental study of the proposed 

algorithm using the divergence based fuzzy boundary region 

is presented in this section.  Eleven data sets from the UCI 

Machine Learning repository[26] and one from the website 

of Milano Chemometrics and QSAR Research Group have 

been used for the experimentation. The data sets consist of 

objects ranging from 120 to 4898 and decision classes 

ranging from 2 to 34 and real valued features ranging from 5 

to 166 in number. The description of the data sets is given in 

table 1.  

Table 1. Data Set Description 

Dataset Objects Features Decision 
classes 

Description 
 

Olitos[27] 120 26 4 Chemical analysis 

Sonar-mines/ rocks 208 61 2 Mine/rock 
recognition 

Glass 214 10 7 Glass identification 

Knowledge[28] 258 6 4 Knowledge level 
classification 

Ionosphere 351 35 2 Structure analysis 

Musk 476 166 2 Musk/non-musk 
classification 

Energy efficiency[29] 768 10 2 Energy analysis 

Plant leaves[30] 1600 65 34 Plant leaves 
identification 

Steel plate faults 1941 28 7 Steel plates fault 

diagnosis 
Segment 2310 20 7 Image 

segmentation 

Statlog 4435 37 7 Land sat satellite 
data 

Wine quality-

white[31] 

4898 12 7 Wine quality 

analysis 

The uncertainty degree corresponding to each single attribute 

sets are computed first and the attribute with minimum 

uncertainty degree is selected. Then, pairs of the selected 

feature with the remaining features are considered and the 

pair having the minimum value of uncertainty degree is 

selected. This process is repeated unless there is no further 

increase in the dependency value. In the worst case, the 

process is terminated when the whole feature set has been 

exhausted. The feature selection process is implemented 

using a program in OCTAVE and the results are presented in 

table 2. 

Table 2: Reduct size 

Dataset Objects Features Reduct 

size 

Uncertainty 

degree 

Olitos 120 26 17 0.716 

Sonar-
mines/rocks 

208 61 31 0.659 

Glass 214 10 7 0.671 

Knowledge 258 6 5 0.518 
Ionosphere 351 35 29 0.586 

Musk 476 166 39 0.164 

Energy 
efficiency 

769 10 6 0.319 

Plant leaves 1600 65 34 0.930 

Steel plates faults 1941 28 15 0.549 
Segment 2310 20 11 0.419 

Statlog 4435 37 21 0.72 

Wine quality-
white 

4898 12 9 0.912 

The data presented in table 2 shows that the size of the 

selected feature set (reduct size) is significantly less than the 

original number of attributes in almost all the cases. The 

algorithm converges even for data sets consisting of around 

5000 objects.  
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VI. CONCLUSION 

Divergence measures are fuzzy measures that express the 

extent of dissimilarity between fuzzy sets. In this paper, the 

generalized fuzzy rough lower and upper approximations of a 

fuzzy set in a fuzzy information system based on divergence 

measure have been defined and their properties were 

investigated. Also, an algorithm for feature selection using 

the fuzzy boundary region has been presented. The proposed 

feature selection method was implemented with twelve real 

world data sets using an OCTAVE program.  The data sets 

consisted of objects ranging from 120 to 4898 and decision 

classes ranging from 2 to 34 and real valued features ranging 

from 5 to 166 in number. The experimental results showed 

that the number of features in almost all the data sets 

considered was considerably reduced by applying the 

proposed algorithm. The algorithm converged even for data 

sets containing approximately 5000 objects. Future work 

includes a comparison of the methods using different 

divergence measures and different fuzzy logical operators. 

REFERENCES 

[1] S. Sumathi and S.N. Sivanandam, "Introduction to Data Mining 

and its Applications", Springer, Berlin, 2006. 

[2] Sonali Suskar, S. D. Babar , "Survey on Feature Selection for Text 

Categorization", International Journal of Scientific Research in 

Computer Science, Engineering and Information Technology, 

Vol.3, Issue.4, pp.261-266, 2018. 

[3] P. Rutravigneshwaran , "A Study of Intrusion Detection System 

using Efficient Data Mining Techniques", International Journal of 

Scientific Research in Network Security and Communication, 

Vol.5, Issue.6, pp.5-8, 2017. 

[4] L. A. Zadeh, "Fuzzy Sets", Information and Control, Vol.8, 

Issue.3, pp.338-353, 1965. 

[5] Z. Pawlak, "Rough Sets", International Journal of Computer and 

Information Sciences, Vol.11, Issue.5, pp.341 - 356, 1982. 

[6] S. Vluymans, L. D'eer, Y. Saeys, C. Cornelis, "Applications of 

Fuzzy Rough Set Theory in Machine Learning: a Survey", 

Fundamenta Informaticae, pp.1-34, 2015. 

[7] D. Dubois, H. Prade, "Rough Fuzzy Sets and Fuzzy Rough Sets", 

International Journal of General Systems, Vol.17, pp.191-209, 

1990. 

[8] J. S. Mi, Y. Leung and T. Feng, "Generalized Fuzzy Rough Sets 

Determined by a Triangular Norm", Information Sciences, 

Vol.178, pp.3203-3213, 2008. 

[9] N. M. Parthalain, R. Jensen and Q. Shen, "Fuzzy entropy assisted 

fuzzy-rough feature selection", in Proceedings of 2006 IEEE 

International Conference on Fuzzy Systems, pp.1499-1506, 2006. 

[10] A. Radzikowska and E. E. Kerre, "A comparative Study of Fuzzy 

Rough Sets", Fuzzy Sets and Systems, Vol.126, pp.137-155, 2002. 

[11] W. Z. Wu, J. S. Mi and W. X. Zhang, "Generalized Fuzzy Rough 

Sets", Information Sciences, Vol.151, pp.263-282, 2003. 

[12] Sheeja T. K. and A. Sunny Kuriakose, "A novel feature selection 

method using fuzzy rough sets", Computers in Industry, Vol.97, 

pp.111 - 116, 2018. 

[13] J. Klir and B. Yuan, "Fuzzy Sets and Fuzzy Logic", Prentice Hall, 

New Jersey,1995. 

[14] Z. Pawlak, "Rough Sets - Theoretical Aspect of Reasoning About 

Data", Kluwer Academic Publishers, The Netherlands, 1991. 

[15] S. Montes, I. Couso, P. Gil and C. Bertoluzza,  "Divergence 

Measure Between Fuzzy Sets", International Journal of 

Approximate Reasoning, Vol.30, pp.91-105, 2002. 

[16] S. An, Q. Hu and D. Yu, "A Robust Rough Set Model Based on 

Minimum Enclosing Ball", In Rough Sets and Knowledge 

Discovery, LNAI 6401 eds J. Yu et al., pp.102-109, Springer - 

Verlag, Berlin 2010. 

[17] C. Chornelis, N. Verdiest and R. Jensen, "Ordered Weighted 

Average Based Fuzzy Rough Sets", In Rough Sets and Knowledge 

Discovery, LNAI 6401, eds J. Yu et al., pp.78-85, (Springer - 

Verlag, Berlin 2010. 

[18] Q. Hu, D. Chen, D. Yu and W. Pedrycz, "Kernelized Fuzzy Rough 

Sets", In Rough Sets and Knowledge Discovery, LNCS 5589, eds 

P. Wen et al. pp.304-311, 2009 (Springer-Verlag, Berlin). 

[19] L. Deer, N. Verbiest, C. Cornelis and L. Godo, "A comprehensive 

study of implicator-conjunctor-based and noise-tolerant fuzzy 

rough sets: Definitions, properties and robustness analysis", 

Fuzzy Sets and Systems, Vol.275, pp.1-38, 2015. 

[20] R. Jensen and Q. Shen,  "Fuzzy-rough attribute reduction with 

application to web categorization", Fuzzy Sets and Systems, 

Vol.141, issue.3, pp.469-485, 2004. 

[21] R. Jensen and Q. Shen, "Fuzzy-rough data reduction with ant 

colony optimization", Fuzzy Sets and Systems, Vol.149, Issue.1, 

pp.5- 20, 2005. 

[22] R. Jensen and Q. Shen, "New approaches to fuzzy-rough feature 

selection", IEEE Transactions on Fuzzy Systems, Vol.17, Issue.4, 

pp.824-838, 2009. 

[23] R. Jensen and Q. Shen, "Fuzzy-rough sets assisted feature 

selection", IEEE Transactions on Fuzzy Systems, Vol.15, Issue.1, 

pp.73 - 89, 2007. 

[24] C. C. Eric, D. Chen, D.S.Yeung, X. Z. Wang and W.T. John, 

"Attributes reduction using fuzzy rough sets", IEEE Transactions 

on Fuzzy Systems, Vol.16, Issue.5, pp.1130-1141, 2008. 

[25] N. M.Parthalain, Q. Shen and R. Jensen, "A distance measure 

approach to exploring the rough set boundary region for attribute 

reduction", IEEE Transactions on Knowledge and Data 

Engineering, Vol.22, Issue.3, pp.305-317, 2010. 

[26] M. Lichman, UCI Machine Learning Repository 

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of 

California, School of Information and Computer Science 2013. 

[27] C. Armanino, R. Leardi, S. Lanteri and G. Modi, "Chemometrics 

and Intelligent Laboratory Systems" Vol.5, pp.343-354, 1989. 

[28] H. T. Kahraman, S. Sagiroglu and I.Colak, "Developing intuitive 

knowledge classifier and modeling of users' domain dependent 

data in web", Knowledge Based Systems, Vol.37, pp.283-295, 

2013. 

[29] A. Tsanas and A. Xifara, "Accurate quantitative estimation of 

energy performance of residential buildings using statistical 

machine learning tools", Energy and Buildings, Vol.49, pp.560-

567, 2012. 

[30] C. Mallah, J. Cope and J. Orwell, "Plant Leaf Classification Using 

Probabilistic Integration of Shape, Texture and Margin Features", 

Signal Processing, Pattern Recognition and Applications, 2013. 

[31] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis, 

"Modeling wine preferences by data mining from physicochemical 

properties", Decision Support Systems, Elsevier, Vol.47, Issue.4, 

pp.547-553, 2009. 

 



   International Journal of Computer Sciences and Engineering                                      Vol.6(6), Jun 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        815 

Authors Profile 

Mrs. Sheeja T. K. obtained her MSc degree in 
Mathematics from Mahatma Gandhi University, 
Kottayam in 2000. She has fifteen years of 
teaching experience. She is presently working as 
an Assistant professor under the Collegiate 
Education Department of Govt. of Kerala and 
pursuing Ph.D. under the supervision and 
guidance of  Dr. Sunny Kuriakose A. 

Dr. Sunny Kuriakose A. was awrded PhD degree 
by Cochin University of Science and 
Technology, Kerala, India in 1995. He has more 
than three decades of teaching experience. He is 
currently serving as the Dean and a Professor at 
Federal Institute of Science and technology, 
Angamaly, Kerala, India. Fourteen scholars 
have been awarded Ph.D degree under his 
supervision. He has published more than sixty research papers in 
various national and international journals. He authored two books 
and edited a number of volumes. His research interest includes 
Fuzzy Logic, Graph Theory, Decision Theory etc. He served the 
Kerala Mathematical Association as its General Secretary for eight 
years. Presently, he is the Academic Secretary of the Association. 

 


