
 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        747 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                            Vol.-6, Issue-9, Sep 2018                              E-ISSN: 2347-2693 

                 

Object Oriented Coupling based Test Case Prioritization 

Ajmer Singh
1*

, Rajesh Kumar Bhatia
2
, Anita Singhrova

3
 

 
1 
CSE Department, DCRUST, Murthal, India  

2
 CSE Department, PEC University, Chandigarh, India  

3 
CSE Department, DCRUST,Murthal,India  

 
*Corresponding Author:   ajmer.saini@gmail.com,   Tel.: +91-9813687398 

 

Available online at: www.ijcseonline.org  

Accepted: 24/Sept/2018, Published: 30/Sep/2018 

Abstract— Test case prioritization is the process of ordering the test case executions to meet various testing goals. Improved 

software quality is one of the ultimate goals of software testing process. While dealing with object oriented testing specific 

features like inheritance, polymorphism and abstraction play important role in test case prioritization.  Measures of object 

oriented features in a software component can be used as quality indicators. Some of the object oriented features may 

contribute positively while some may contribute negatively to the software quality. Software components can be ranked on the 

basis of their contribution in overall quality of software. These rankings may be helpful in test case prioritization. This study 

presents a test case prioritization approach based on software quality aspect. We performed an empirical investigation on six 

sequential versions of open source software and analyzed the contribution of various object oriented metrics in quality of the 

software. The work presents a novel technique of test case prioritization that would not only enhance the quality of the software 

but also prioritize the test cases as per fault proneness of the software modules. Proposed approach first investigates the impact 

of coupling metrics on software quality then provides ranking to component classes as per coupling measures. It is observed 

that coupling metrics potentially correlate with the change impact of software.   

 

Keywords— Regression Testing,Test case Prioritization, Machine Learning,Object Oriented metrics, Software Quality, Faults 

Prediction, Object Oriented Testing.

 

I.  INTRODUCTION  

 

Test case prioritizing is to give order to test cases in test suit 

to meet various testing goals. In case of model base testing 

the behaviour of software under test (SUT) is depicted by 

some sort of model. The degree of interdependence of a class 

to other class is described as coupling [1]. It is a well 

established fact that coupling may affect the change 

dependence in software. Tighter the coupling is, higher this 

dependence would be. Coupling can be of two types: static 

and dynamic. To estimate the dynamic coupling of software, 

run time analysis of the software is required. But static 

coupling can be estimated by examining the dependency 

model of SUT. Also it has been empirically established that 

coupling measures of SUT can be used as indicators of ripple 

effect and change impact. The software components with 

high measure of coupling have higher probability of 

containing the ripple effect [2]. There are empirical 

evidences that coupling does affect the structural complexity 

of software [3].  And coupling effect manifest itself 

emphatically when restricted to mutation analysis [4].  Thus 

when software is modified as a part of maintenance activity, 

it is expected that a change in highly coupled component 

would have higher possibility of stimulated faults as  

 

compared to a change in loosely coupled component. In case 

of regression testing, testers generally have the knowledge of 

test case coverage. The prior coverage information 

accompanied with coupling measures can be used to 

prioritize test cases in the subsequent version(s) of the 

software. The underlying hypothesis is that object oriented 

coupling has impact on the software quality. And a low 

quality module is more prone to faults as compared to high 

quality module.   

 

Based on this hypothesis, a novel technique of test case 

prioritization is presented in this research work. This work is 

organized into five sections as follows: Section II describes 

the related work in filed. Section III explains proposed 

methodology for our study. Section IV outlines the empirical 

evaluation. Section V presents conclusions and future 

directions. 

 

II. RELATED WORK  

 

Test case prioritization has been a vast area of research in 

recent years. Diverse studies exist in literature in this 

domain. But most of the research work done previously deals 

with procedural programming concepts. So far, a very little 



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        748 

work has considered the impact of object oriented features on 

test case prioritization. This section reviews some of the 

studies that have investigated the problem of prioritization in 

context of object oriented testing. It is found that most of the 

object oriented prioritization techniques have used model 

based testing. Model based testing is a technique to generate 

test cases on the basis of requirements [5]. Prioritization of 

test cases in model based testing uses different models like 

Activity diagrams, Finite state Machines (FSM) models, 

Extended FSM, UML state diagrams, Test Dependency 

Graphs (TDG), Object oriented System Dependency Graphs 

(OSDG) and Event Sequence Graphs.  Research work of [6, 

7, and 8] achieved the prioritization by analysing the changes 

in states of system models with the execution of test cases. 

Panigrahi and Mall [9] used extended - OSDG to perform 

test case prioritization for object oriented programs and they 

used backward and forward slicing techniques to identify the 

model elements that might have been affected by a change in 

software. Highest priority was assigned to test case that 

covered maximum number of such elements. Research work 

of  Korel and Koutsogiannakis [10] experimentally compared 

the performance of coverage based TCP and model based 

TCP.  Results of [10] observed significant improvement in 

early fault detection by model based TCP. Gantait [11] used 

extended UML activity diagrams to generate an intermediate 

model and then generated test cases on the basis of target test 

environment and prioritized them on the basis of coverage of 

transitions in activity model. Kundu et al [12] proposed 

system level test case generation and prioritization technique 

for object oriented testing named System Testing for Object-

Oriented systems with test case Prioritization (STOOP). 

STOOP works on criteria of scenario coverage used 

sequence graphs (SG) models. Jaroenpiboonkit and 

Suwannasart [13] used an approach to find test case order by 

using Test Dependency Graph (TDG). TDG is used to 

represent relationship among the classes of SUT.  Object 

oriented slicing is used to break the cyclic dependency of 

classes and to find the order of testing. Acharya and Mahali 

[14] used UML activity diagrams to model the SUT which 

was later converted into activity graphs. Authors applied 

association rules from the data mining to get frequently 

affected nodes in the model. Vedpal, Chauhan and Kumar 

[15] proposed hierarchical approach for prioritizing test cases 

of object oriented software. Authors  used two level criteria 

for prioritization of test cases. In first level classes used in 

software, are prioritized on the basis of inheritance 

information and in second level test cases are ordered using 

inheritance weights of the classes covered. Authors in [44] 

presents the review of various object oriented coupling based 

test case selection techniques. 

 

III. PROPOSED METHODOLOGY 

 

This section highlights the various components of the 

proposed methodology.   

A. Outline of proposed methodology 

In regression testing modules covered by a test case can 

easily be traced from the prior runs of that test case. The 

modules covered can be analyzed for different OO metrics. 

Out of which, some metrics that are related with software 

coupling can be identified. Each module can be assessed for 

these coupling oriented measures. And coupling based 

weights can be assigned to these modules. From all the 

modules a test case covers; aggregate weight for that test 

case can be computed. Based upon aggregate weights, test 

cases can be provided corresponding ranks. The figure 1 

below gives the outline of the proposed methodology 

 

 

 

 

 

 

 

Figure. 1.  Outline of the proposed methodology 

 

B. Object Oriented Metrics  

Coupling is a measure of inter-dependencies among the 

software components. Features like inheritance, 

encapsulation and polymorphism manifest the 

interdependency object oriented software [16]. Information 

of coupling can be used to predict fault proneness and other 

costs of software [17]. The metrics like Chidamber and 

Kemerer object-oriented metrics suite (CK) [18], Tang & 

Chen metrics [19], Henderson Metrics [20], Li and Henry 

Metrics [21], Li Metrics [22], MOOD metrics [23] and 

QMOOD metrics [24] have been used in literature to assess 

various dependencies in software. Out of these, CK metrics 

have most extensively been used for predicting 

maintainability, fault proneness and quality of software [25]. 

In this research we look forward to analyze relationship 

between CK metrics and the quality of software modules. 

Software modules are weighted as per their contribution in 

software quality. 

 

C. Measuring Coupling in OO software 

In object oriented software, coupling is not only contributed 

by control, data, stamp, hybrid, content and common types 

but also by other types like coupling between objects (CBO), 

Depth of inheritance tree (DIT) and Number of Children 

(NOC). There are different measures of coupling in object 

oriented software like: structural coupling measure, dynamic 

coupling measure, logical coupling measure [26]. Where the 

structural coupling represents the inter connection of various 

structural components like classes, objects and method. 

Structural coupling does not require running the software for 

its measurement. Other types of coupling can be interpreted 

accordingly. Since structural complexity can be estimated 

from models like object relational diagrams (ORD), test 

sequence diagrams (TSG), unified modelling language 

From statistical analysis of 

software determine the various 

coupling oriented OO metrics 

for each class.     

 

Assign coupling weights to classes on the 

basis of some threshold (Ɵ)   

From the clasess covered by a test case 

determine aggregate coupling weight for each 

test case 

Rank the test cases as per these 

aggregate weights  

 



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        749 

(UML) diagrams and dependency diagrams. This study 

utilises dependency graphs to estimate the coupling measure. 

A unit of testing in object oriented scenario can be either a 

class or a method. Similarly the coupling can be method 

level coupling and class level coupling. A class level 

coupling is evaluated and analyzed in this work. Following 

section gives the algorithm to determine coupling weight for 

a component class.  

   

D. Proposed algorithm to determine Coupling weight  
Input: Regression Test Suite T 
Output: Accumulated object oriented coupling weight for every Test case is 

computed  

Step 1. Form a class dependency graph G= (V, E) where V is set of nodes 
and E set of edges. 

2. for every test case TTi compute a set of nodes
GSi 

which 

represents the nodes covered by Ti . 

3. For every node 
SiNj

compute 
 


t

k
CkNjOOc

1
)()(

 

Where t is number of various elements of node 
.Nj

and 
)(NjOOc

is 

total coupling contribution of all t elements present at node 
.Nj

 
4. Compute the accumulative coupling weight covered by each test case 

TTi by  

                        
)(TiWcc

  =
 SiNjNjOOc :)(

 

5. Output  
)(TiWcc

 for every TTi  

 

Figure 2.  Proposed Algorithm to determine coupling weight.  

 

The fig. 2 shown above depicts the steps involved in 

determining the coupling weights of the testing modules. 

 

E. Assigning weight to software components  

Every software module has its own measure of coupling. 

This measure indicates module’s significance in fault 

prediction and quality assessment. Coupling weights can be 

assigned on the basis of derived impact of coupling of 

current module on the quality. In order to validate the weight 

assignment strategy, the correlation and regression analysis 

of coupling with the quality of the modules is performed.  

Also some acceptable threshold (Ɵ) of coupling is required 

to compare the coupling of different components and to 

provide relative weights. Difference of coupling of current 

module and Ɵ would indicate how far the module is from 

acceptable module. And the module that are at greatest 

difference are provide that have most negative coupling 

impact on quality.  

 

F. Quality Prediction Model   

Software quality is a multivariate problem and software 

aspects like inheritance, coupling of objects, cohesion, size, 

cyclometic complexity etc contribute to it. Low software 

quality is one of the derivatives of fault proneness of a 

software component. Object oriented metric like CK, 

MOOD, QMOOD, and Martin’s etc have been used to assess 

the complexity and fault proneness of the software. Basili, 

Briand, and Melo [27] ,Briand et al. [28], El Emam, Melo, 

and Machado[29], Gyimothy, Ferenc, and Siket[30], Zhou 

and Leung [31], Catal, and Diri [32], Alan and Catal [33], 

Singh, Kaur, and Malhotra [34], Malhotra and Bansal [35], 

Xu, Ho, and Capretz [36] are some of the studies that have 

investigated effectiveness of CK metrics in fault prediction.  

The studies advocate that CK metrics are the indicators of the 

fault proneness of software modules. The prediction may 

also be made on other metrics like MOOD, QMOOD and 

Martin’s metrics. There are empirical evidences that 

performance of QMOOD and CK metrics are almost similar 

[37]. Compositions of these metrics may also be incorporated 

to associate fault proneness with these software ingredients. 

In some of studies composition of Martins and MOOD 

performed better than the composition of CK and MOOD 

[38]. Also the metrics have been investigated for fault 

localization [39].But usage of CK metrics suite has been 

most as compared to others. We adopted a multivariate 

regression model to predict the quality of software modules 

in SUT. The model is depicted in brief in next section.  

 

G.  Multiple Linear Regression Model  

Multi-linear regression is the approach of statistical data 

modelling, when the dependent variable and independent 

variables are linearly dependent. And the dependent variable 

is dependent on more than one independent variable.  

Formally it is described as under 

 

Y = β0+ β1X1+ β2X2 + …+ βk Xk + ɛ                               (1)  

Where Y is a dependent variable and X1, X2…Xk are the 

independent variables, β0, β1...βk, are the regression 

coefficients and ɛ is random error variable. The random error 

variable ɛ has zero mean.  

 

H. Independent Variables for study  

The various measures of a class such as WMC, DIT, NOC, 

DIT, RFC, CBO and LCOM control the quality of it. Some 

of these may be favourable for the quality while some may 

affect it negatively. Software with low coupling and high 

cohesion is considered to be more reliable, manageable and 

less prone to faults. To analyze the impact of various metrics 

on the quality of software, we initially considered all of the 

seven as independent variables for this study. All of these are 

static metrics and can be calculated with automated software 

like ckjm [40], JMT [41], and STAN [42].  Where ckm and 

JMT are open source and freeware. And STAN is proprietary 

software. JMT is used to extract these metrics for 6 different 

versions ANT software.  

 

I. Dependent Variables  

Quality of software is dependent on many intrinsic features 

of it. Low coupling is one of such essential features. To 



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        750 

estimate the overall quality of software comprehensive 

information regarding testing, design and implementation is 

required. But individual class in software may be assessed 

for quality by analyzing some quantifiable features of it. JMT 

measures the quality of a software mode on the scale of 0 to 

100. Where 0 represents the obvious least value of quality 

and 100 as best.   We estimated the class level quality of the 

software version and considered it as dependent variable for 

analytical purpose. 

 

It should be noted that low quality modules are difficult to 

maintain and are more prone to faults. So estimation of 

quality of module is inherently associated with fault 

proneness it.   

  

J. Test vectors  

Being dependent on multiple object oriented features the 

Object oriented complexity can be modelled multiple 

regression vector. The dimensions of the vector space are 

determined by various variable parameters contributing to 

OO complexity. And a test case that covers various OOPs 

components can also be presented as vector. We call it Test 

vector. It can be modelled like 

   

                                (2) 

 

Where   be the multi – dimensional input 

variables indicting the OO metrics of the software and 

be their corresponding weights.  

 

IV. EMPIRICAL EVALUATION 

 

The independent variables of this model are PIM, WMC, 

WAC, NMI, MNO, DIT, NOC, CBO, and RFC. The Quality 

of the module is the dependent variable. The six successive 

version of Ant software i.e. Ant 1.6, Ant 1.6.1, 1.6.2, 1.6.3, 

1.6.4 and 1.6.5 were statistically examined. The data about 

the various attributes is collected with the help of JMT tool. 

The tables 1 to 6 given below show the statistics of the 

different versions. It is observed that two successive versions 

of the software differ very little. So regression test suite can 

be applied to successive version(s). Also a mathematical 

regression model is derived for each version of the software. 

Quality of the module is a function of independent variables. 

The equations from 3 to 8 shown below are the regression 

models for six different versions. The coefficients in 

regression equation signify the correlation of any OO metric 

with quality. Also the sign of coefficients signify whether the 

correlation is positive or negative.   

 

Table 1. Analysis of Version 1.6.0 
Metric Min Max Mean Standard 

Deviation 

PIM 0 121 13.597 17.099 

WMC 0 100 8.878 10.677 

WAC 0 45 4.237 6.018 

NMI 0 115 11.631 18.592 

MNO 0 30 0.706 1.774 

DIT 2 8 3.098 1.245 

NOC 0 59 0.522 3.228 

CBO 2 50 11.183 8.722 

RFC 0 272 31.817 36.778 

QUALITY 40 100 84.68 14.208 

 

Linear Regression Model-1 
 

Quality= (0.0977)PIM+  (-.6011)WMC+(-0.5031)WAC+ 

              (-0.3049)NMI+ (-0.5049)MNO+(-1.7979)DIT+ 

              (-0.3743)NOC+ (-0.6075)CBO+(0.0665)RFC+ 

              105.1645                         (3) 

 

Correlation coefficient                  0.9419 

Mean absolute error                      3.459  

Root mean squared error              4.7855 

Relative absolute error                 29.4758 % 

Root relative squared error          33.6705 % 

Total Number of Instances          575    

 

Table 2. Analysis of Version 1.6.1 

 

 

 

 

 

 

 

 

 

 

 

Linear Regression Model-2 

QUALITY = (0.0675) PIM + (-0.5686) WMC + (-0.4788) 

WAC + (-0.2831) NMI + (-0.4557) MNO + (-1.8249) DIT + 

(-0.3878) NOC + ( -0.6216) CBO +(0.0658) RFC  + 05.1419      

             (4) 

Correlation coefficient                  0.9376 

Mean absolute error                      3.5186 

Root mean squared error               4.8206 

Relative absolute error                  31.0394 % 

Root relative squared error            34.8752 % 

Total Number of Instances            510    

 

Table 3. Analysis of Version 1.6.2 
Metric Min Max Mean Standard 

Deviation 

PIM 0 121 13.424 16.852 

WMC 0 102 8.835 10.824 

WAC 0 45 4.185 6.067 

NMI 0 112 11.332 18.239 

MNO 0 30 0.654 1.78 

DIT 2 8 3.077 1.228 

Metric Min Max Mean Standard 

Deviation 

PIM 0 121 13.506 16.764 

WMC 0 100 8.79 10.684 

WAC 0 45 4.114 5.861 

NMI 0 107 11.543 18.19 

MNO 0 30 0.696 1.812 

DIT 2 8 3.108 1.238 

NOC 0 58 0.574 3.442 

CBO 2 51 11.103 8.504 

RFC 0 273 30.538 34.113 

QUALITY 40 100 84.716 13.817 



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        751 

NOC 0 59 0.552 3.371 

CBO 2 53 10.491 8.337 

RFC 0 273 30.538 34.113 

QUALITY 35 100 84.908 14.198 

 

Linear Regression Model-3 

QUALITY =      (0.0767) PIM +( -0.479) WMC + (-0.4999 ) 

            WAC + ( -0.2901) NMI +(-0.4832) MNO +  

                          (-1.922) DIT + (-0.3871) NOC +  

                          (-0.463) CBO +    104.7885                     (5) 

 

Correlation coefficient                  0.9415 

Mean absolute error                      3.5076 

Root mean squared error              4.7993 

Relative absolute error                  30.259  % 

Root relative squared error           33.8008 % 

Total Number of Instances             552     

Table 4. Analysis of Version 1.6.3 

 
Attribute Min Max Mean Standard 

Deviation 

PIM 0 121 13.32 17 

WMC 0 107 8.899 11.124 

WAC 0 45 4.177 6.148 

NMI 0 115 11.247 18.219 

MNO 0 30 0.678 1.756 

DIT 2 8 3.087 1.21 

NOC 0 60 0.571 3.401 

CBO 2 56 10.358 8.397 

RFC 0 273 30.538 34.113 

QUALITY 34 110 85.037 14.232 

 

Linear Regression Model-4 

 
QUALITY =      (0.0597) PIM  + ( -0.4553) WMC + 

                           ( -0.4829)WAC +( -0.2853) NMI +  

                           (-0.4733) MNO + (-1.8479) DIT + 

                           (-0.3889) NOC + (-0.4651) CBO + 104.5835           

                           (6) 
Correlation coefficient                  0.9403 

Mean absolute error                      3.6117 

Root mean squared error              4.8493 

Relative absolute error                 31.0185 % 

Root relative squared error          33.9862 % 

Total Number of Instances          575 

 

Table 5. Analysis of Version 1.6.4 
Attribute Min Max Mean Standard 

Deviation 

PIM 0 121 13.323 17.001 

WMC 0 107 8.903 11.126 

WAC 0 45 4.179 6.149 

NMI 0 115 11.247 18.219 

MNO 0 30 0.678 1.756 

DIT 2 8 3.087 1.21 

NOC 0 60 0.571 3.401 

CBO 2 56 10.36 8.4 

RFC 0 273 30.538 34.113 

QUALITY 34 100 85.03 14.237 

 

Linear Regression Model-5 

 

QUALITY = (0.0588) PIM + (-0.4548)WMC + 

                     (-0.4827) WAC + ( -0.2846)NMI + 

                     (-0.4736) MNO + ( -1.8471) DIT +    

                     (-0.3887) NOC + (-0.4655)CBO + 104.57     (7) 

Correlation coefficient                  0.9402 

Mean absolute error                      3.6153 

Root mean squared error              4.8524 

Relative absolute error                 31.0457 % 

Root relative squared error           33.9968 % 

Total Number of Instances           575      
 

Table 6. Analysis of Version 1.6.5 
Attribute Min Max Mean Standard 

Deviation 

PIM 0 121 13.325 17.003 

WMC 0 107 8.908 11.129 

WAC 0 45 4.179 6.149 

NMI 0 115 11.247 18.219 

MNO 0 30 0.678 1.756 

DIT 2 8 3.087 1.21 

NOC 0 60 0.571 3.401 

CBO 2 56 10.363 8.403 

RFC 0 306 33.678 41.693 

QUALITY 34 100 85.028 14.24 

 

Linear Regression Model-6 

 

QUALITY =  (0.065) PIM  +(-0.5147) WMC + 

                     ( -0.4857)WAC + (-0.2909)NMI + 

                     ( -0.4916)MNO + (-1.9007)DIT + 

                     (-0.39)NOC + (-0.5369) CBO +  

                     (0.0298)RFC  + 105.0304                              (8) 

 

Correlation coefficient                  0.9394 

Mean absolute error                      3.6305 

Root mean squared error              4.8894 

Relative absolute error                 31.1707 % 

Root relative squared error           34.2482 % 

Total Number of Instances            575  
 
From the regression equations 1 to 8 and tables 1 to 6, 

inference can be made that software quality and various 

modules are inter-dependent. To validate it, following steps 

analysis is performed as described in subsections A and B. 

Subsections C and D describe the prioritization process and 

its validation respectively.  

 

A. Analysis of regression model  

From regression equations 1 to 8 it can be seen different 

versions have almost similar regression equations and also 

the metrics maintain corresponding impacts. Also the value 

of correlation coefficient indicates strong association of the 

metrics with quality of software. It is observed that coupling 

metrics DIT, CBO and NOC contribute negatively in the 

quality of the module and therefore selected as attributes of 



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        752 

interest for this study. To validate the results hypothesis 

testing is performed.  

 

B. Hypothesis testing  

Since the proposed work is based on the assumptions that 

coupling metrics affect the quality of the class so hypothesis 

testing is performed to validate it.  To conduct hypothesis 

testing we composed the following NULL and alternate 

hypothesis. 

i) Null Hypothesis (H0):  There is no impact of object 

oriented coupling on quality of the software module.  

ii) Alternate Hypothesis (Ha): Object oriented coupling has 

negative effect on the quality of the software module.  

 

To evaluate the Null hypothesis we performed p-value test 

on all six versions of the software. We obtained value of t-

stat = 35.5186 and p-value as 6.48E-147. With p-value 

<=0.05, the null hypothesis is rejected.  

 

Table 7. Pairwise –Correlation Analysis of metrics 

 

To evaluate the alternate hypothesis, Pearson's correlation 

coefficient (r) is computed. Pearson’s coefficient signifies 

both the direction of correlation and strength of the 

correlation of dependent and independent variables. The pair 

wise value of (r) for DIT, NOC and CBO with Quality of the 

class is shown in table(x).  We calculated the r-values for all 

six versions and it is found that  

i. Quality of the Class is correlated with DIT, NOC and 

CBO measures. On the basis of results obtained the null 

hypothesis is therefore rejected and concluded that 

metrics have impact on the quality of the software.  

ii. Also the correlation coefficients of all tested pairs come 

out to be negative, which indicates that these metrics have 

negative impact on the quality of the software.  

iii. Also CBO is most negatively correlated with the quality 

of the class and hence it has the worse impact on the 

quality of the class. 

 

It is also observed from the table above that CBO is most 

negatively affecting metric to the quality of the software.  

DIT is second most affecting metric and that too affect it 

negatively.  NOC is least affecting metrics as per the results.   

C. Ordering the Test Cases as per coupling measures  

As inferred from the table (X) above, CBO,NOC and DIT  

have negative impact on the quality of the software. Also a 

low quality class is more susceptible to faults. So in order to 

prioritize the test cases ,classes may be ranked on the basis of 

the measures of the CBO, NOC and DIT.  For analysis 

purpose we choose the top ten classes with maximum value 

of CBO. Classes where the CBO is samevalue of  DIT is 

used to provide the ranks and where both CBO and DIT are 

same , value of NOC is used for ranking.  

 

Table 8. Ordering of Test cases using coupling weights 
Test 

Case NAME DIT NOC CBO 

 

Rank  

T1 
IntrospectionHelper 2 0 57 

1 

T2 
Project 2 0 56 

2 

T3 
Execute 2 0 46 

3 

T4 
Jar 6 2 44 

4 

T5 
Main 2 0 43 

5 

T6 
Javadoc 4 0 42 

6 

T7 
Zip 5 1 40 

7 

T8 
AntClassLoader 2 1 39 

8 

T9 
FileUtils 2 0 39 

9 

T10 
Redirector 2 0 38 

10 

 

D. Validation of Results  

To validate the proposed approach, change analysis on two 

versions viz. 16.0 and 1.6.5 was performed.  To detect the 

modified classes the jar files of two versions were compared 

with the help of Jarcomp [44] tool. Highly modified classes 

were identified and mapped with the top ranked classes as 

per the proposed strategy. It was observed that nearly 70% of 

the highly modified classes were correctly mapped to 

corresponding ranks as per the CBO, DIT and NOC weights.   

 

V. CONCLUSION AND FUTURE SCOPE  

 

This study proposed coupling based test case prioritization 

approach for object oriented testing. Proposed work analyses 

the coupling measures in context of regression testing and 

establishes the correlation of coupling with the quality of 

classes of the SUT. Linear regression analysis and 

correlation analysis were used to build the mathematical 

model for quality prediction of classes. A hypothesis testing 

was performed to validate the correlation results. Classes to 

test are ranked on the basis of the severity of the metrics.  

The work may be extended for the other metrics as well. The 

impact of cohesion on quality may also be explored in future 

investigations. 

  

 

 

 

 

 

Version  r (DIT, 

Quality) 

r (NOC, 

Quality) 

r (CBO, 

Quality)  

Null Hypo-

thesis 

1.6.0 -0.54503 -0.10197 -0.77292 rejected  

1.6.1  -0.53711 -0.11226 -0.76455 rejected  

1.6.2 -0.54078 -0.11476 -0.75207 rejected  

1.6.3  -0.5326 -0.10735 -0.7593 rejected  

1.6.4 -0.53239 -0.10723 -0.75953 rejected  

1.6.5 -0.53247 -0.10718 -0.75992 rejected  



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        753 

REFERENCES 

 
[1] Gupta, Nirmal Kumar, and Mukesh Kumar Rohil. "Object 

Oriented Software Maintenance in Presence of Indirect 

Coupling." International Conference on Contemporary Computing. 

Springer Berlin Heidelberg, 2012. DOI: 10.1007/978-3-642-

32129-0_44 

[2] Briand, Lionel C., Jurgen Wust, and Hakim Lounis. "Using 

coupling measurement for impact analysis in object-oriented 

systems." Software Maintenance, 1999.(ICSM'99) Proceedings. 

IEEE International Conference on. IEEE, 1999 

[3] Darcy, David P., et al. "The structural complexity of software an 

experimental test." IEEE Transactions on software 

engineering 31.11 (2005): 982-995. 

[4] Offutt, A. Jefferson. "Investigations of the software testing 

coupling effect."ACM Transactions on Software Engineering and 

Methodology (TOSEM)1.1 (1992): 5-20. 

[5] Dalal, Siddhartha R., et al. "Model-based testing in 

practice." Proceedings of the 21st international conference on 

Software engineering. ACM, 1999. 

[6] Bogdan Korel, Luay H. Tahat, and Mark Harman. 2005. Test 

Prioritization Using System Models. In Proceedings of the 21st 

IEEE International Conference on Software Maintenance (ICSM 

‘05). IEEE Computer Society,Washington, DC,USA, 559–568.  

[7] Bogdan Korel, George Koutsogiannakis, Luay H. Tahat. 2008. 

Application of System Models in Regression Test  Suite 

Prioritization. In Proceedings of the IEEE International 

Conference on  Software Maintenance (ICSM), 247–256. 

[8] Tahat, Luay, et al. "Regression test suite prioritization using 

system models."Software Testing, Vefication and Reliability 22.7 

(2012): 481-506. 

[9] Chhabi Rani Panigrahi,Rajib Mall. Model-Based Regression Test 

Case Prioritization. ACM SIGSOFT Software Engineering 

Notes.Volume 35 Issue 6. 2010.  1-7. 

[10] B. Korel and G. Koutsogiannakis, “Experimental Comparison of 

Code-Based and Model-Based Test Prioritization”, In Proceedings 

of IEEE International Conference of Software Testing Verification 

and Validation Workshops, 2009. 

[11] Gantait. A. Test case Generation and Prioritization from UML 

Model. In Proceedings of the 2011 Second International 

Conference on Emerging Applications of Information Technology. 

IEEE Computer Society Washington, DC, USA. 2011. 345-50 

[12] Kundu, D., Sarma, M., Samanta, D. and Mall, R. (2009), System 

testing for object-oriented systems with test case prioritization. 

Softw. Test.  Verif. Reliab., 19: 297–333. doi: 10.1002/stvr.407. 

[13] Jutarat Jaroenpiboonkit and Taratip Suwannasart. Finding a Test 

Order using Object-Oriented Slicing Technique. In 14th Asia-

Pacific Software Engineering Conference 2007. Aichi.49-56 

[14] Acharya, Arup Abhinna, Prateeva Mahali, and Durga Prasad 

Mohapatra. "Model Based Test Case Prioritization Using 

Association Rule Mining." Computational Intelligence in Data 

Mining-Volume 3. Springer India, 2015. 429-440. 

[15] Vedpal, Naresh Chauhan, Harish Kumar. A Hierarchical Test Case 

Prioritization Technique for Object Oriented Software. 

International Conference on Contemporary Computing and 

Informatics, Mysore,India,2014. 249-254. 

[16] A. Yadav and R. A. Khan. 2009. Measuring design complexity: an 

inherited method perspective.SIGSOFT Softw. Eng. Notes 34, 4 

(July 2009), 1-5. DOI=http://dx.doi.org/10.1145/1543405.1564532 

[17] Nasib S. Gill and Sunil Sikka. 2010. New complexity model for 

classes in object oriented system.SIGSOFT Softw. Eng. Notes 35, 

5 (October 2010), 1-7. 

DOI=http://dx.doi.org/10.1145/1838687.1838704 

[18] Chidamber, Shyam R., and Chris F. Kemerer. Towards a metrics 

suite for object oriented design. Vol. 26. No. 11. ACM, 1991 

[19] Tang, Mei-Huei, Ming-Hung Kao, and Mei-Hwa Chen. "An 

empirical study on object-oriented metrics." Software Metrics 

Symposium, 1999. Proceedings. Sixth International. IEEE, 1999 

[20] Brian Henderson-Sellers. 1995. Object-Oriented Metrics: 

Measures of Complexity. Prentice-Hall, Inc., Upper Saddle River, 

NJ, USA 

[21] Li, Wei, and Sallie Henry. "Object-oriented metrics that predict 

maintainability." Journal of systems and software 23.2 (1993): 

111-122 

[22] Li, Wei. "Another metric suite for object-oriented 

programming." Journal of Systems and Software 44.2 (1998): 155-

162  

[23] Abreu FB, Carapuça R. Object-oriented software engineering: 

Measuring and controlling the development process. In 

Proceedings of the 4th international conference on software quality 

1994 Oct 3 (Vol. 186, pp. 1-8) 

[24] Bansiya J, Davis CG. A hierarchical model for object-oriented 

design quality assessment. IEEE Transactions on software 

engineering. 2002 Jan;28(1):4-17 

[25] Singh, Ajmer, Rajesh Bhatia, and Anita Sighrova. "Taxonomy of 

machine learning algorithms in software fault prediction using 

object oriented metrics." Procedia Computer Science132 (2018): 

993-1001. 

[26] Poshyvanyk, Denys, and Andrian Marcus. "The Conceptual 

Coupling Metrics for Object-Oriented Systems." ICSM. Vol. 6. 

2006. 

[27] Basili, Victor R., Lionel C. Briand, and Walcélio L. Melo. "A 

validation of object-oriented design metrics as quality 

indicators." IEEE Transactions on software engineering 22.10 

(1996): 751-761 

[28] Briand LC, Wüst J, Daly JW, Victor Porter D. Exploring the 

relationships between design measures and software quality in 

object-oriented systems. J Syst Softw. 2000;51(3):245-273. 

doi:10.1016/S0164-1212(99)00102-8. 

[29] El Emam K, Melo W, Machado JC. The prediction of faulty 

classes using object-oriented design    metrics. J Syst Softw. 

2001;56:63-75.   doi:10.1016/S0164-1212(00)00086-8.3 

[30] Gyimothy T, Ferenc R, Siket I. Empirical validation of object-

oriented metrics on open source software for fault    prediction. 

IEEE Trans Softw Eng. 2005;31(10):897-910. 

doi:10.1109/TSE.2005.112. 

[31] Zhou, Yuming, and Hareton Leung. “Empirical Analysis of 

Object-Oriented Design Metrics for Predicting High and Low 

Severity Faults.” IEEE Transactions on Software Engineering 

32.10 (2006): 771–789. 

[32] Catal,Cagatay, and Banu Diri. "Software fault prediction with 

object-oriented metrics based artificial immune recognition 

system." Product-focused software process improvement (2007): 

300-314. 

[33] Alan, Oral, and Cagatay Catal. “An Outlier Detection Algorithm 

Based on Object-Oriented Metrics Thresholds.” 2009 24th 

International Symposium on Computer and Information Sciences, 

ISCIS 2009. N.p., 2009. 567–570 

[34] Singh, Yogesh, Arvinder Kaur, and Ruchika Malhotra. “Empirical 

Validation of Object-Oriented Metrics for Predicting Fault 

Proneness Models.” Software Quality Journal 18.1 (2009): 3–35. 

[35] Malhotra, Ruchika, and Megha Khanna. “Mining the Impact of 

Object Oriented Metrics for Change    Prediction Using Machine 

Learning and Search-Based Techniques.” 2015 International 

Conference on Advances in Computing, Communications and 

Informatics, ICACCI 2015. N.p., 2015. 228–234. 



   International Journal of Computer Sciences and Engineering                                     Vol.6(9), Sept. 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        754 

[36] Xu, Jie, Danny Ho, and Luiz Fernando Capretz. “An Empirical 

Validation of Object-Oriented Design Metrics for Fault 

Prediction.” Journal of Computer Science 4.7 (2008): 583–589.  

[37] Olague, Hector M. et al. “Empirical Validation of Three Software 

Metrics Suites to Predict Fault-Proneness of Object-Oriented 

Classes Developed Using Highly Iterative or Agile Software 

Development Processes.” IEEE Transactions on Software 

Engineering 33.6 (2007): 402–419.  

[38] Elish, Mahmoud O., Ali H. Al-Yafei, and Muhammed Al-

Mulhem. “Empirical Comparison of Three Metrics Suites for Fault 

Prediction in Packages of Object-Oriented Systems: A Case Study 

of Eclipse.” Advances in Engineering Software 42.10 (2011): 852–

859. 

[39] Ajmer Singh, Neha Tanwar, “A Support Vector Machine based 

approach for effective Fault Localization” In International 

Conference on Soft Computing: Theory and Applications, SoCTA 

2018, Jalander, India  In Press  

[40] Spinellis, D.: ckjm: a tool for calculating Chidamber and Kemerer 

Java metrics: Technical report, Athens University of Economics 

and Business, Athens, Greece (2006) 

[41] Java Measurement Tool : jmt.stage.tigris.org 

[42] STAN: Structural Analysis for JAVA : http://stan4j.com/ 

[43] JarcompTOOL: 

https://activityworkshop.net/software/jarcomp/index.html 

[44] Bhandari, Parul, and Ajmer Singh. "Review of object-oriented 

coupling based test case selection in model based testing." 

In Intelligent Computing and Control Systems (ICICCS), 2017 

International Conference on, pp. 1161-1165. IEEE, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors Profile 

Mr. Ajmer Singh pursed Bachelors and Masters  

of Technology from Kurukshetra University, 

india. He is currently pursuing Ph.D. and 

currently working as Assistant Professor in 

Department of Computer Science and 

Engineering, DCRUST Murthal, India..He is a member of 

IAENG. He has 10 years of teaching experience and 4 years 

of Research Experience. 

 

Dr. Rajesh Kumar Bhatia is a senior member of 

CSI, and he is also senior member of ACEEE, He 

is working as professor in Computer Science and 

Engineering Department, PEC University, 

Chandigarh. His main research work focuses on 

Software Testing, Software Engineering and Software 

Clones Detection. He has more than 20 years of teaching 

experience and 12 years of Research Experience. 

 

Dr. Anita Singhrova. is Professor, Dean Faculty 

of Information Technology and Computer 

Science at Deenbandhu Chottu Ram University 

of Science and Technology, Murthal, Sonepat, 

India. She   holds a Ph.D degree from GGS 

Indraprastha University, Delhi, India. She has completed M.E 

(Computer Science & Engg.) from  Punjab Engineering 

College, Chandigarh, India and B.Tech (Computer Science) 

from T.I.T&S, Bhiwani, India. She has also been certified as 

a Java Programmer by Sun Microsystems. She possesses 

around twenty years of teaching experience. Her research 

interests include network security, mobile computing and 

heterogeneous networks. She has contributed in various 

research papers and articles published in various national and 

international journals and conferences. 

 

 


