

 © 2019, IJCSE All Rights Reserved 745

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

 An Approach to Quantify the Productivity of Software Developers

towards the Perceived Productivity

J Rajeshwar

CSE Department, Guru Nanak Institutions Technical Campus (Autonomous), Hyderabad, Telangana, India

*Corresponding Author: prof.rajeshwar@gmail.com

Available online at: www.ijcseonline.org

Accepted: 26/Jan/2019, Published:31/Jan/2019

Abstract -- Many software improvement agencies attempt to beautify the productivity of their builders. All too regularly,

efforts geared towards increasing developer productiveness are undertaken without a proper knowledge of how exactly builders

spend their time at their work and how it impacts their own belief of productivity. Verifying earlier findings, we try to found

that developers pay their time on a good type of tasks and switch frequently among hem, succeeding in particularly fragmented

work. Our findings enlarge past existing studies therein we tend to correlate builders’ work conduct with perceived fecundity.

Although productiveness is based on individuals, developers may be roughly gathered in morning sessions, low at lunch and

afternoon. A continuous linear regression per participant found that greater grade persons usually use a high-quality, and

emails, deliberate meetings and unrelated web sites with a terrible belief of productivity. We discuss opportunities of our

findings, the capability to expect high and occasional productiveness and endorse layout tactics to create higher tool guide for

planning builders’ workdays and enhancing their work productivity.

Keywords— quantification, perceived productivity, regression

I. INTRODUCTION

A software developer’s work day may be well influenced by

a wide variety of factors such as the tasks being performed,

meetings, and interruptions from co-workers, the

infrastructure or the workplace environment. Number of

these factors end in activity and context switches that may

cause fragmented work and can have a negative impact on

the developer’s perceived productivity, progress on tasks,

and quality of output. As a result, researchers and

practitioners both have a long interest in better understanding

how developers work and how their work could be quantified

to optimize productivity and efficiency. Researchers have

investigated work practices and work fragmentation in detail

from various perspectives, specifically the effect of

interruptions on fragmentation and how developers organize

their work in terms of tasks and working spheres. Using both

a diary and an observational study format to understand

software developer work practices, Perry and colleagues

gained several insights, including that most time was spent

coding, and that there was a substantial amount of unplanned

interaction with colleagues. Singer and colleagues, using

several study methods including tool usage statistics, found

that developers spent most of their time reading

documentation and that search tools were the most heavily

used . Since the time these earlier studies on developers’

work practices were conducted, empirical studies of software

development have focused more on particular aspects of a

developer’s work day.

In this paper, we study developers’ work practices and the

relationship to the developers’ perceptions of productivity

more holistically, while also examining individual

differences. In particular, our study seeks to answer the

following research questions:

Q1 How a developer’s work day look like?

Q2 how fragmented may be a developer’s work?

Q3 are there any noticeable trends in how developers

understand their productivity?

Q4 what is the connection between developers’ activity and

perceived productivity at work?

To examine these queries, we planned and organized a study

involving the observance of twenty developers’ interactions

with their laptop over a 2 week time period. From this

observance, we tend to were able to gather logs describing

however a developer was interacting with the pc (i.e.,

through the keyboard or the mouse) and in what applications

the interaction was occurring. Our observance also gathered

self-reports from the developers concerning their current

mailto:prof.rajeshwar@gmail.com

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 746

task(s) at hour time intervals, and a self-rating of their

perceived productivity. The twenty developers from whom

we tend to gather knowledge worked for four totally different

corporations of variable size, with variable comes, project

stages and customers, providing additional diversity in our

results .

The next step is to research the work in more details:

excluding conferences, developers stay solely between .3 to

2.0 minutes in associate activity before switching to a

different activity. These terrible short times per activity and

therefore the kind of activities a developer pursues daily

illustrate the high fragmentation of a developer’s work.From

participant’s self-reported, perceived productivity we found

that though there was lots of deviations between people,

these may be categorized into 3 groups: morning individuals,

afternoon individuals, and people whose perceived

productivity swaybacked [12] at lunch. Morning individuals

typically return to figure a trifle bit earlier, and acquire the

foremost necessary things done before the group

arrives.Afternoon folk sometimes arrive later and pay most

of their time with conferences and emails, and acquire stuff

drained in the afternoon, so feeling a lot of productive [11].

These results counsel that whereas data staff normally has

various perceived productivity patterns, people do seem to

follow their own habitual patterns for every day.

Figure 1: Production Level at Different Sessions

II. LITERATURE SURVEY

T. DeMarco and T. Lister et.al [1] proposed that Wide

variation in programmer performance has been frequently

reported in the literature. In the absence of alternative

clarification, managers have to just accept that the variation

is attributable to individual characteristics. J. Singer, T.

Lethbridge et.al [2] presents work practice data of the daily

activities of software engineers. Four separate studies are

presented; one looking longitudinally at an individual SE;

two looking at a software engineering group; and one

looking at company-wide tool usage statistics. D. E. Perry,

N. A. Staudenmayeret.al [3] determined however technology

affects the software development method, researchers often

overlook structure and social issues [3]. M. Zhou and A.

Mockuset.al [5] [6] proposed Outsourcing and off-shoring

lead to a rapid influx of new developers in software projects.

That, in turn, manifests in lower productivity and project

delays. When adjusted for the task difficulty, developer

productivity did not plateau but continued to increase over

the entire three year measurement interval [13] [14]. Based

on the literature review it was found that software

productivity measurement can be done using SLOC (Source

Lines of Code), function points, use case points, object

points, and feature points [4]. A. N. Meyer, T. Fritz et.al [7]

explained better the software development community

becomes at creating software, the more software the world

seems to demand. M. Czerwinski, E. Horvitz, and S. Wilhite

et.al [8] reported on a diary study of the activities of

information workers aimed at characterizing how people

interleave multiple tasks amidst interruptions. C. Parnin and

S. Rugaberet.al [9] explained Interrupted and blocked tasks

are a daily reality for professional programmers.

Unfortunately, [10] the strategies programmers use to

recover lost knowledge and rebuild context when resuming

work have not yet been well studied.

III.PROPOSED SYSTEM

Understanding developer productivity is important to deliver

software on time and at reasonable cost. Yet, there are

numerous definitions of productivity and, as previous

research found, productivity means different things to

different developers. Through a cluster analysis, we tend to

determine and describe six teams of developers with similar

perceptions of productivity: social, lone, focused, balanced,

leading, and goal-oriented developers. We argue why

personalized recommendations for software developers’

work is vital and discuss style implications of those clusters

for tools to support developers’ productivity

SME Algorithm (Structure Mapping Engine)

In analogy, a given state of affairs is known by comparison

with another similar state of affairs. Analogy is also wont to

guide reasoning, to get conjectures concerning AN unknown

domain, or to generalize many experiences into AN abstract

schema. Consequently, analogy is of nice interest to each

psychological feature psychologists and computing

researchers. Psychologists would like to clarify the

mechanisms underlying analogy so as to grasp human

learning and reasoning.Artificial Intelligence researchers

would like to emulate figurative process on computers to

supply additional versatile reasoning and learning systems..It

constructs all consistent ways that to interpret a possible

analogy and will thus while not backtracking. SME provides

a "tool kit" for building matchers satisfying the structural

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 747

consistency constraint of Gentner's theory. The remainder of

the constraints defining a intermediary are such by a group of

rules, that indicate native, partial matches and estimate

however powerfully they ought to be believed. The program

uses these estimates and a unique procedure for combining

the native matches to with efficiency turn out and appraise all

consistent international matches.

IV.IMPLEMENTATION

User Interface

In this we design the windows for the project. These

windows are used for secure login for all users. To connect

with server user must give their username and password then

only they can able to connect the server. If the user already

exits directly can login into the server else user must register

their details such as username, password and Email id, into

the server. Server will create the account for the entire user to

maintain upload and download rate. Name will be set as user

id. Logging in is usually used to enter a specific page.

Create and Assign

In this module admin can login and he/she will create the

employee with basic data. And that data is given to the

employee. Here admin will create the projects. Work will

assign to different teams with team leaders. And monitor the

working of the employees and details about the projects that

which are under processing.

Activity and Productivity Verification

After Admin Login then he/she will monitor the activities of

particular employee. That means how many hours the

employee is in active and inactive time . And how many

times employee switch from one work to another work.

Based on all these things the productivity level of the

employee is monitored.

Work Life of Development

In this employee should login initially. Employee will see the

project which is assigned by the admin. And then he will

start the project and give the status of that project daily. And

here they can switch from one task to another task.

Dashboard

In this employee can see his/her complete profile and they

can edit their profile. They can chat or send the any files or

images to their teammates. They can see the files which were

send by other employee.If any Employee is having any

queries or anything that is not related, then he can raise

question to the Admin.

Survey Report

In this employee should login initially, then employee gives

the self report on his/her corresponding project.Regarding the

work the Employee has done Admin may raise questions

after the report that is send by him. Some questions will

display here for those questions the employee will provide

some answers. Based on the answers the status of the

employee will be calculated.

V.RESULTS

Figure 2: Home Page

Figure 2 illustrates the home page of the application.In this

page three are three tabs. First tab is for Manager login,

Second is for Employee login, Third is for Client Login.

Figure 3: Mangers’ Home Page

Figure 3 illustrates the home page of the Manager. In this

page the first tab is to manage employee i.e. he can add

employees required for the project, second tab is for

checking the project status, third tab is for productivity level

and last tab is logout tab.

Figure 4: Project Details

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 748

Figure 4 illustrates the project details. Manger directly gets the

projects that are required by the client. After getting request from

the client Manager has to accept the project then it will be treated
under the ongoing project.

Figure 5: Status Report

Figure 5 illustrates the status report of the ongoing project. Manger

will check under the assigned tasks tab. So that he will get the status

of the each employee whether it is pending or completed. Employee

will send the report to the Manager after completion of the task that

is assigned to him.

Figure 6: Productivity Level

Figure 6 illustrates the productivity level of the project. In this page

Manager checks the number of switching done by the employee,

while shifting from tasks Manager observes the search results

whether it is related to the task or personal work, active and inactive

time of the employee. And also the number of mouse clicks and the

Key strokes made by the employees. Thus increase in better
productivity level.

Figure 7: Dashboard

Figure 7 illustrates the dashboard. In this page employee can see his

profile. Employee can communicate with the others if he has any

queries regarding the project or any personal work like chatting,

sending mails, greetings also. This is considered as the inactive time
thus considered as decrease in the productivity level.

VI. CONCLUSION

As a result, researchers and practitioners both have long interest in

better understanding how developers work and how their work

could be quantified to optimize productivity and efficiency. So this

will increase the productivity levels and would result in good

product in minimum time with better efficiency

REFERENCES

[1] T. DeMarco and T. Lister, “Programmer performance and the effects of

the workplace,” in Proceedings of the 8th international conference on

Software engineering. IEEE Computer Society Press, 1985, pp. 268–

272.

[2] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People,
organizations, and process improvement,” IEEE Software, vol. 11, no.

4, pp. 36–45, 1994.

[3] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination
of software engineering work practices,” in CASCON First Decade

High Impact Papers, ser. CASCON ’10. IBM Corporation, 2010, pp.

174–188.
[4] B. W. Boehm, “Improving software productivity,” vol. 20, no. 9. IEEE,

1987, pp. 43–57.

[5] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software
developers’ perceptions of productivity,” in Proceedings of the 22Nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, ser. FSE 2014. ACM, 2014, pp. 19–29.
[6] R. Van Solingen, E. Berghout, and F. Van Latum, “Interrupts: just a

minute never is,” IEEE software, no. 5, pp. 97–103, 1998.

[7] S. T. Iqbal and E. Horvitz, “Disruption and recovery of computing tasks:

Field study, analysis, and directions,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, ser. CHI ’07.

ACM, 2007, pp. 677–686.
 [8] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task

switching and interruptions,” in Proceedings of the SIGCHI conference

on Human factors in computing systems. ACM, 2004, pp. 175–182.
[9] C. Parnin and S. Rugaber, “Resumption strategies for interrupted

programming tasks,” Software Quality Journal, vol. 19, no. 1, pp. 5–34,

2011.
[10] V. M. Gonz´alez and G. Mark, “Constant, constant, multi-tasking

craziness: Managing multiple working spheres,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, ser. CHI
’04. ACM, 2004, pp. 113–120.

[11] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated

software development teams,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE ’07. IEEE Computer

Society, 2007, pp. 344–353.

[12] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did Last

Summer – An Investigation of How Developers Spend Their Time,”

Proceedings of ICPC 2015 (23rd IEEE International Conference on

Program Comprehension), pp. 25—-35, 2015.
[13] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual

studio usage in practice,” in Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering

(SANER ’16), 2016.

[14] M. Zhou and A. Mockus, “Developer fluency: Achieving true mastery
in software projects,” in Proceedings of the Eighteenth ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser.

FSE ’10. ACM, 2010, pp. 137–146.

