

 © 2018, IJCSE All Rights Reserved 776

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

Mutation Operators in Python using SMT-P

R. Gupta
1*

, C. Verma
2
, N.Singh

3

1
Dept. of Computer Science and Engineering/BFCET, Bathinda, India

2
 Dept. of Computer Science and Engineering/BFCET, Bathinda, India

3
 Dept. of Computer Science and Engineering/BFCET, Bathinda, India

*Corresponding Author: ramilgupta.bfcet@gmail.com, Tel.: +91-95011-15437

Available online at: www.ijcseonline.org

Accepted: 03/Jul/2018, Published: 31/Jul/2018

Abstract— Mutation testing is one of the active techniques for testing its code. It is implemented by the replacement of the

syntax of a program by another piece of code. This new version of the code is known as a mutant as is the most crucial part for

testing the code. An effective test set is necessary to differentiate the mutant from the original program. In this paper we have

presented a semantic mutation testing tool in python which works on semantics of python language than the traditional way of

testing. In semantic mutation, a particular language is modified to create the mutant. Using SMT-P that is semantic mutation

testing using python, we have inspected the efficiency of test cases on both traditional and semantic mutation operators.

Comparison of traditional and semantic mutation testing operators in same test cases has been found to be quite useful and

proves the usefulness of Semantic based testing over traditional one.

Keywords— Mutation testing, SMT (Semantic mutation testing), SMT-P (Semantic mutation testing tool in python), Language

I. INTRODUCTION

Testing plays the most essential role of the several levels of

software development life cycle. It is a method of

determining faults. The testing is very effective and the

quality of software is higher. The correct execution of a

program is ensuring by testing in each probable scenario by

creation of active test cases which identify the possible

faults.

Mutation testing is a technique aimed at locating and

exposing the weakness in test suites [9-10]. To evaluate the

effectiveness of test set is the main focus. here the program

structure is considered for detection of faults like in white

box testing.

Mutation testing is also mentioned as fault based testing. Any

small change which distinguishes the program from the

original program is a mutant. There are several types of

mutants: stillborn, trivial, equivalent.

II. RELATED WORK

The prerequisite is a source code and a test suite for that

source code. To produce a mutant, one and only thing which

is required is to vary the original program by inserting a

minor fault in it. By running the original test data this

modification is tracked. The change in the original code has

been detected (dead/ Killed Mutant) is states by differences

between the original and the changed code. In case the

mutant remains alive, the possibility arises either if the

mutant and the original program are identical or the mutant

could not be killed as the test set was insufficient which was

incapable to identify the made conversion.

For mutation traditional mutation testing consists of

operators that represent syntactically small faults like

exchanging + by – in an arithmetic expression.

Traditional mutation testing are several weaknesses. There

are listed Some of the drawbacks: for a small program, the

number of mutants produced is large [8], with this the

probabilities of equivalent mutants are rises. Additional

amount of manual work is necessary, in order to deal with

equivalent mutants. The cost of testing is rises by this

additional determination. The confusions related to semantic

changes do not consider by Mutation operators, syntactic

level is the only concern. To resolve the above problems

automatic detection of equivalent mutants and lowering the

introduction of equivalent mutants has been a major concern

[5-8]. In this paper presents Semantic Mutation testing and a

tool (SMT-P) designed in python for semantic mutation

testing.

III. METHODOLOGY

In order to deal with several specific types of mistakes,

Semantic Mutation Testing was proposed [2], [4]. A small

change in syntax can have a large effect on semantics [3].

For introducing the semantic mistakes, different ways are

available [4]. For SMT-P, modification in the syntax of

description has been selected in order to simulate semantic

mutation.

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 777

There are three consequences of mutation testing, strong MT,

weak MT and firm MT. The program and the mutant can be

individually recognized in the case of solid mutation testing,

if they produce dissimilar outputs for a similar test case. On

the other hand, in weak mutation testing, the program and the

mutant are illustrious when they produce a dissimilar value

for a specific variable, at a specific point in the program [1].

When the tester himself picks the point where the

dissimilarity in the value of a variable should reflect is firm

mutation testing [5].

We study that in a language L and description N the

programs to be written. The behaviour of a program is

defined by the mixture of description and language i.e; (M,

L). In traditional mutation testing, there is alteration in the

syntax, the mutant of the above description can be (M‘, L).

On the other hand, the description can be denoted for

semantic mutation testing as (M, L‘).

We have developed a new mutation testing tool for Python,

called SMT-P. The development of SMT-P inspired from the

fact, that there is no such tool that fulfil the necessities of

SMT. The simulations in the semantic mutations return with

the alterations made in the syntax of the description. The aim

was to design an easy to use and a flexible tool. The semantic

mutation operators have been defined in this specific unit.

ARCHITECTURE OF SMT-P AND EXPERIMENTAL

STUDY

SMT-P is a tool developed in Python. This can run

independently or using Pycharm[11].

Figure 1: Choosing the input program

To choose any option here a choice menu is provided to the

user. There are nine choices shows in menu. A mutant is

created accordingly from which one is selected. To see

whether the mutant gets destroyed or not the test cases can be

applied.

Test viewer : This is a front end to see the test suites

associated to a specific program. The outcomes can be

observed by clicking on a specific test case.

This gives expected result, a complete view of results, the

exact errors given by unit test cases eg. assertion errors etc.,

picturing the exact parameters passed and result obtained.

The function components have been designed in order to

build, test and execute mutants.

THE MUTATION GENERATOR

1. According to the ideas in [11], there are seven

semantic mutation operators have been

implemented. If – Else: To those ‗if‘ constructs

which do not have an else branch, an else branch is

added.

2. Last case of switch: a default branch is added, when

using a switch case without a default branch.

3. Default for switch: Here the previous branch of

switch statement is changed to be the default

statement of switch.

Figure 2: Test Viewer

Figure 3: Console viewer

To confirm complete branching structures, the above two

operators are designed. As the programmers could assume

the implementation of last branch o structure, because

Unfinished branches can lead to faults.

4. Floor of division: Using the floor method,

Truncating the float value.

5. Ceil of division: The quotient depends on the

approach defined, on division operations i.e. the

result can either be the just the immediate earlier

integer of the quotient or the immediate next integer

to the quotient. Here to form the mutant the tail

method is used.

6. Indentation: This plays a main role in python. To

see the result of test cases, Here the indentation of

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 778

statements is changed. As there are no starting and

closing brackets.

7. Elif: Wherever in a ‗if‘ statement followed by an

‗else- if‘ statement, else is missing, an else

statement is added.

IV. RESULTS AND DISCUSSION

From table 1 and 2, we see that to produce mutant , each

program we have applied seven semantic mutation operators

on some programs. To check the effectiveness of the test

suites, the specific test suites have been applied to the mutant

and the program. Ex: In Tcas, entire of 10 test cases have

been applied out of which all the test cases are capable to

distinguish the mutant from original program for the mutant

produced by ‗if - else‘ operator. As outcome, we get 100 %

efficiency of the test suite. Equally, the efficiency has been

checked upon for other programs also. For Trim test suite is

60% efficient, or for tcas test suite is 100% efficient.

(killed/total) *100 is calculated to calculate the efficiency.

Similarly, also the efficiency has been calculated for

traditional mutation operators. By matching the results,

SMT-P is more efficient for semantic mutation testing.

Table 1: Efficiency Of Test Suites In Smt

Table 2: Efficiency Of Test Suites In Traditional Mutation Testing

V. CONCLUSION AND FUTURE SCOPE

In this paper, we have presented a new tool SMT-P based on

semantic mutation testing. Regarding of the semantics of the

description language there can be various misunderstandings.

In traditional mutation testing the syntax of a description is

mutated. In other side, when we deal with language, it is

semantic mutation testing. when a test case run on actual

program, that produces different results and on its mutant is

said to be failed. The mutant is said to be killed, When a test

case fails. For different operators, here we have calculated

the efficiency of different test suites. As a part of future

work, the alike can be tested for larger test suites. Extra

semantic mutation operators can be established.

REFERENCES

[1] W.E. Howden, Weak mutation testing and completeness of test

sets, IEEE Transactions on Software Engineering 8 (4) (1982)

371–379

 [2] A.J. Offutt, Investigations of the software testing coupling effect,

ACM Transactions on Software Engineering Methodology 1 (1)

(1992) 3–18.

[3] R.G. Hamlet, Testing programs with the aid of a compiler, IEEE

Transactions on Software Engineering 3 (1977) 279–290.

[4] K.S.H.T. Wah, a theoretical study of fault coupling, Journal of

Software Testing, Verification and Reliability 10 (1) (2000) 3–45.

 [5] A.J. Offutt, J. Pan, Detecting equivalent mutants and the feasible

path problem, in: Annual Conference on Computer Assurance,

COMPASS 1996, IEEE Computer Society Press, Gaithersburg,

MD, 1996, pp. 224–236.

[6] R.M. Hierons, M. Harman, S. Danicic, using program slicing to

assist in the detection of equivalent mutants, Journal of Software

Testing, Verification and Reliability 9 (4) (1999) 233–262.

 [7] J.A. Clark, H. Dan, R.M. Hierons, Semantic mutation testing, in:

Fourth Workshop on Mutation Analysis, 2010, pp. 100–109.

[8] J. Offutt, J. Pan, automatically detecting equivalent mutants and

infeasible paths, Software Testing, Verification, and Reliability 7

(3) (1997) 165–192.

[9] R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test data

selection: help for the practical programmer, IEEE Computer 11

(4) (1978) 31–41

[10] A.J. Offutt, J.H. Hayes, A semantic model of program faults, in:

International Symposium on Software Testing and Analysis,

ISSTA 1996 1996, pp. 195–200.

[11] ―Pycharm python IDE‖ https://www. jetbrains. com /pycharm/.

[12] L. Hatton, Safer C: Developing Software in High-integrity and

Safety-critical Systems, McGraw–Hill, 1994.

