

 © 2018, IJCSE All Rights Reserved 762

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-6, Issue-7, July 2018 E-ISSN: 2347-2693

A Study

on Different Tools for Code Smell Detection

S.James Benedict Felix.

1*
, Viji Vinod

2

1
Computer Science, Research Scholar, Bharathiar University, Coimbatore, India

2
 Computer Applications, Prof & Head, Dr.MGR Educational and Research Institute University, Chennai, India

Available online at: www.ijcseonline.org

Accepted: 13/Jul/2018, Published: 31/Jul/2018

Abstract— Code and design smells are the poor result to recurring implementation and design problems. They may hinder the

progress of a system by building it hard for software engineers to carry out transform. Detection of code smells is very

challenging for code developers and their informal definition leads to the completion of detection techniques and tools. Several

refactoring tools have been developed. A bad smell is a sign of some setback in the code, which requires refactoring to deal

with. Various tools are offered for detection and deduction of these code smells. These tools are different significantly in

detection methodologies.

Keywords— Code smell detection tools, Detection techniques, MobileMedia (MM), Health Watcher (HW)

I. INTRODUCTION

Once code smells are placed in a system they can be

eliminated by refactoring the source code. Refactoring [1] is

a technique to construct a computer program more readable

and maintainable. This paper analyzed four code smell

detection tools, namely JDeodorant, infusion, PMD, and

JSpIRIT. These four detection tools were chosen because

they evaluate Java programs, they can be setup and installed

from the given downloaded files, they detect the smells in

target systems. Other tools were discarded for various

reasons. For example, Checkstyle has not detected instances

of smells in any of the target systems, so it was discarded.

Instead, it supports only visualization features.

Section I contains the introduction of code smell detection,

Section II contains code smell detection tools and detection

techniques, Section III contains the experimental studies,

Section IV contains the related works of the code smell

detection tools, and Section V concludes research work with

future directions.

II. CODE SMELL DETECTION TOOLS

Table 1 shows the fundamental information about the

evaluated tools [3]. The column Tool has the names of the

analyzed tools as reported in the tools corresponding

websites. The column Version indicates the version of the

tools that were used in the experiments. The column Type

specifies if the tool is available as a plugin for the Eclipse

IDE or as a separate tool. Languages column have the

programming languages that can be evaluated by the tools,

with Java being the general language among them. The

column Refactoring shows whether the tool offers the feature

of refactoring the code smell detected, which is available

only in JDeodorant. The column Export signifies if the tool

allows exporting the results to a file, a feature present only in

inFusion and JDeodorant that export the results in an HTML

file and an XML file, respectively.

Table 1 Code smell detection tools
Tool Version Type Langu-

ages

Refactoring Export Detection

Technique

JDeodorant 5.0.0 2015 Eclipse Java Yes Yes Refactoring

Opportunities

Infusion 1.8.6.2015 Standalone Java,

C,C++

No Yes Software

Metrics

PMD 5.3.0 2015 Eclipse Java,

C,C++

No No Software

Metrics

JSpIRIT 1.0.0 2014 Eclipse Java No No Software

Metrics

The tool JDeodorant2 is an open source Eclipse plugin for

Java that detects four code smells: God Method, God Class,

Feature Envy, and Switch Statement. A tool inFusion is a

standalone tool for Java, C, and C++ that detects 22 code

smells, including the three smells of our interest namely God

Method, God Class, and Feature Envy. inFusion is no longer

available for download at this moment, as a commercial

product. The code smells detection techniques were primarily

based on the detection strategies described by Lanza and

Marinescu. The tool PMD3 is an open source tool for Java

and an Eclipse plugin that detects many code smells

including the God Class and God Method. The detection of

code smells techniques are based on metrics. For God Class,

the detection strategies of a single metric are used: LOC

(lines of code). Finally, JSpIRIT4 is an Eclipse plugin for

Java that identifies and prioritizes ten code smells, including

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 763

the three code smells namely God Method, God Class, and

Feature Envy.

III. EXPERIMENTAL STUDY

With the object-oriented [2] methodology, the experimental

study analyzed by two Java systems namely MobileMedia

and Health Watcher. This experimental study describes these

two target systems because of the code smell experts

responsible for analyzing the code to identify code smells.

The manual identification of code smells is a complicated

task. Therefore, intimate knowledge of the system and its

domain make possible the comprehension of the source code.

This allowed the experts to focus code smell instances

instead of trying to understand the system, its dependencies,

and other domain-related specificities. In this paper, other

reasons for choosing the two systems: (i) Access to their

source code, allowing us to manually retrieve code smells,

(ii) their code is readable, facilitating for instance, the task of

identifying the functionalities implemented by methods and

classes, (iii) these systems were beforehand used in other

maintainability-related studies.

 3.1 MobileMedia (MM)

This system is a software product line (SPL) for applications.

This system is manipulating the photo, audio, and video on

mobile devices. Our study involved nine object-oriented

versions (1 to 9) of MobileMedia, ranging from 1 to 3

KLOC. Table 2 shows for each version of MobileMedia the

number of methods, classes, and lines of code [4]. This paper

observes versions 1 to 9 there was an increase of 2057 lines

of code, 166 methods, and 31 classes.

3.2 Health Watcher (HW)

This system is a typical Web-based information application

that allows civilian to register complaints regarding health

issues. It is a nontrivial and real system that uses

technologies common in day-to-day software development,

such as GUI, persistence, concurrency, RMI, Servlets, and

JDBC (Greenwood et al. 2007). This paper analyse ten

object-oriented versions (1 to 10) of Health Watcher, ranging

from 5 KLOC to almost 9 KLOC. We can observe that from

version 1 to version 10 there was an increase of 2706 lines of

code, with the addition of 41 classes and 270 methods.

IV. COMPARATIVE STUDIES OF CODE SMELL

DETECTION TOOLS

In this section summarizes the detection of the code smells in

the two target systems using infusion, JDeodorant, JSpIRIT,

and PMD tools.

4.1 MobileMedia (MM)

Table 2 listed the number of code smells identified by each

tool in the nine versions of MobileMedia. For God Class, the

tool JDeodorant reports the maximum number of classes,

reporting 85 classes, and the other tools report less than 9.

For God Method, the tool JDeodorant reports 100 methods.

For God Method, JSpIRIT reports 27 God Methods, while

infusion and PMD report similar numbers, 16 and 17,

respectively. For Feature Envy, JSpIRIT reports the highest

number of methods, reporting 74 methods, followed by

JDeodorant reporting 69 methods. Lastly, inFusion reports

only 9 instances of Feature Envy. Considering the total of

smells reported, however, inFusion is the most conservative

tool, with a total of 28 code smell instances for God Class,

God Method, and Feature Envy. PMD is less conservative

because it totally detects 24 instances of God Method and

God Class. PMD does not detect Feature Envy. JDeodorant

is the most aggressive and it is detecting totally 257 instances

of various methods. That is, JDeodorant is the most

conservative tools and detects more amounts of smells than

inFusion and PMD. However, JSpIRIT is the tool that reports

totally 110 code smells for the nine versions of the

MobileMedia system.

4.2 Health Watcher (HW)

Table 2 shows the total number of code smell instances

identified by every tool in the ten versions of Health

Watcher. For God Method, JDeodorant is the most

aggressive which reports 599 code smells. The other tool

JSpIRIT reports fewer methods, with reporting 30 methods,

PMD reporting 13, and infusion reporting none. PMD does

not detect Feature Envy. For Feature Envy, JSpIRIT reported

111 methods, while Jdeodorant reported 90 and infusion

reported 48. PMD is the second conservative tool, which is

detecting a total number of 46 instances of God Class and

God Method. Jdeodorant is the more aggressive tool, which

is detecting a total number of 787 instances. That means, it

detects 16 times the amount of smells of the tools infusion

and PMD.

Table 2: Total number of code smell detection by each tool

Code

Smell

Infusion Jdeodorant JSpIRIT PMD

MM HW MM HW MM HW MM HW

God

Class

3 0 85 98 9 20 8 33

God

Method

17 0 100 599 27 30 16 13

Feature

Envy

8 48 69 90 74 111 ---- ----

Total 28 48 254 787 110 161 24 46

 RELATED WORK

There are many papers analyzed code smell detection tools.

A list of detection tools was proposed in a systematic

 International Journal of Computer Sciences and Engineering Vol.6(7), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 764

literature review by Fernandes et al. [5]. Generally tools are

evaluated individually and considering only a few smells.

Fontana et al. were used six versions of a system to evaluate

four tools, Checkstyle, inFusion, JDeodorant, and PMD. This

paper analysed inFusion, JDeodorant, and PMD, calculating

the agreement among these tools similarly to Fontana et al.

Chatzigeorgiou and Manakos and Tufano et al. (2015) also

analyzed multiple versions of systems to investigate the

evolution of code smells.

Many papers proposed different approaches to detect

code smells in software. Oizumi et al. (2016) proposed that

code smells are related, appearing together in the source code

to make different design problems. Another study by Fontana

et al., (2015) applied 16 different machine-learning

algorithms in 74 software systems to detect four code smells

in an attempt to avoid some common problems of code smell

detectors [6]. This paper extends our previous work by

including the tool JSpIRIT and the Health Watcher system to

increase the confidence of our results.

V. CONCLUSION

The comparison of code smell detection tools is a

difficult task because these tools are based on informal

definitions of the smells. The different interpretations of code

smell by researchers and developers lead to tools with

distinct detection techniques, results, and consequently, the

amount of time spent with validation. In this paper,

MobileMedia and Health Watcher are used as target systems,

to evaluate the accuracy and the agreement of the tools

inFusion, JDeodorant, JSpIRIT, and PMD. The accuracy was

measured by calculating the recall and the precision of tools

in detecting the code smells from the reference list.

 For all smells in both systems, JDeodorant

identified most of the correct entities but reports many false

positives. A lower precision and a higher recall increase the

validation effort but capture most the affected entities. On the

other hand, inFusion, JSpIRIT, and PMD had higher

precision, reporting more correct instances of smelly entities.

A higher precision with a lower recall means that the tools do

not report some of the affected entities.

References

[1] Altman DG (1991),‖ Practical statistics for medical research‖.

Chapman & Hall, London

[2] Brown WJ, Malveau RC, Mowbray TJ, Wiley J (1998),‖

AntiPatterns: Refactoring software, architectures, and projects in

crisis‖.Wiley

[3] Wiley Chatzigeorgiou A, Manakos A (2010) ― Investigating the

evolution of bad smells in object-oriented code‖. In: Proceedings

of the 7th international conference on the quality of information

and communications technology. IEEE, pp 106–115.

[4] DeMarco T (1979),‖Structured analysis and system specification‖.

Yourdon, New York

[5] Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) ,‖A

review-based comparative study of bad smell detection tools‖. In:

Proceedings of the 20th international conference on evaluation and

assessment in software engineering (EASE’16).ACM, article18.

[6] Fontana FA, Mäntylä M, Zanoni M, Marino A (2015) Comparing

and experimenting machine learning techniques for code smell

detection. Empir Softw Eng 21(3):1143–1191.

doi:10.1007/s10664-015-9378-4

[7] Amanda Damasceno,‖, On the evaluation of code smells and

detection tools‖, Journal of Software engineering research and

development. DOI 10.1186/s40411-017-0041-1. Oct. 2017.5:7

