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Abstract-  The interrupted time series data plays a very important role in the evaluation of public health interventions and also 

to improve hospital antibiotic prescribing. We take the data from a study on the effects of the Italian smoking ban in public 

places on hospital admissions for Acute Coronary Events (ACEs). In January 2005, Italy introduced regulations to ban 

smoking in all indoor public places, which the aim of limiting adverse health affects of second hand smoke. The data used here 

are ACEs in the Sicily region between 2002 and 2006 among those aged 0-69 years. In this paper, we use three models for 

interrupted time series data.  Root Mean Square Error (RMSE) measure is used for selecting the best model. Three models are 

empirically tested using interrupted time series smoke ban data in the Sicily region, Italy. 
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I. INTRODUCTION 

In an interrupted time series (ITS) study, A time series of a 

particular outcome of interest is used to establish an 

underlying trend which is „interrupted‟ by an intervention at a 

known point.  In time, the counter factual scenario provides a 

comparison for the evaluation of the impact of the 

intervention by examining any change occurring in the post 

intervention period. ITS requires a clear differentiation of the 

pre-intervention period and the post intervention period. In 

some cases it may be difficult to define when the intervention 

began and to differentiate the effects of different components. 

The outcomes of ITS may take various forms such as counts, 

continuous data (or) binary variables. In our paper, we took 

the data from a study on the effects of the Italian smoking ban 

in public places on hospital admissions for Acute Coronary 

Events (ACEs). In January 2005, Italy introduced regulations 

to ban smoking in all indoor public places, which the aim of 

limiting adverse health affects of second hand smoke. The 

data used here are ACEs in the Sicily region between 2002 

and 2006 among those aged 0-69 years.  

The above paragraph explains the introduction of the research 

paper. Section II gives the brief history of review of literature 

and section III explains the methodology of three methods, 

one is quadratic regression method, second one is Interrupted 

time series method using ARIMA and the third one is 

Adaptive smoothing method. Using R
2
 criteria, we will 

choose the best model. Section IV gives the empirical 

investigation given fo the above models. Section IV explains 

the summary and conclusions of the paper. 

II. RELATED WORK 

Interrupted time series (ITS) analysis is a valuable study 

design for evaluating the effectiveness of population level 

health interventions that have been implemented at a clearly 

defined point in time. The ITS has been used for the 

evaluation of a wide range of public health interventions 

including new vaccines, cycle helmet legislation, changes to 

paracetamol packaging, traffic speed zones, to reduce 

inappropriate use of key antibiotics, wearing helmets when 

riding bikes to reduce the death rates in bike accidents and 

precaution against nosocomial infections as well as in the 

evaluation of health impacts of un planned events such as the 

global financial crisis. 

Traditional epidemiological study designs such as cohort and 

case-control studies can provide important evidence about 

disease etiology. Randomized controlled trails have been 

considered. The gold standard design for evaluating the 

effectiveness of an intervention,  but Randomized controlled  

trails(RCT) are not always possible, in particular for health 

policies and programmes targeted at the population level. The 

interrupted time series is increasingly being used for the 

evaluation of public health interventions, it is particularly 

suited to interventions introduced at a population level over a 

clearly defined time period and that targets population level 

health outcomes [1]. 

          Not only in the areas of health departments but also 

many departments, for example on 8 November 2016, the 

government of India announced the demonetization of all 500 

and 1000 Rupees bank notes of Mahatma Gandhi series. Due 
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to this the economic position of India was fell down 

drastically. The BSE Sensex and NIFTY stock indices fell 

over 6 percent on the day after the announcement. In the days 

following the demonetization, the country faced severe cash 

shortages with severe detrimental effects. So there is a 

situation of distinguish the effect of intervention from secular 

change, that is change that would have happened even in the 

absence of intervention. Estimating the intervention effect is 

done by comparing the trend in the outcome after 

intervention to the existing trend in the pre-intervention 

period. 

          By considering the impact of large scale interventions 

(for example, population-based health interventions, media 

campaigns, and dissemination of professional guidelines) or  

public policy changes (for example, new laws or taxes), the 

researchers are faced with an effective sample size of N=1, 

where the treated group may be local community, state or 

even larger unit. It is also fairly common in these situations 

that the only data available are reported at an aggregate level.  

In multiple observations on an outcome variable of interest in 

the pre-intervention and post intervention periods can be 

obtained; an Interrupted Time Series Analysis (ITSA) offers a 

quasi-experimental research design with a potentially high 

degree of internal validity. ITSA has been used in many areas 

of study such as assessing the effects of community 

interventions, public policy regulatory actions and health 

technology assessment, etc. ITSA has also been proposed as a 

more flexible and rapid design to be considered in health 

research before defaulting to the traditional two-arm 

randomized controlled trial [2].  

           Randomized Controlled Trails (RCTs) are considered 

the ideal approach for assessing the effectiveness if 

interventions. But not all interventions can be assessed with 

an RCT, where as for many intervention trails can be 

prohibitively expensive. ITS analysis is a useful Quasi-

experimental design with which to evaluate the longitudinal 

effects of interventions, through regression modeling [3]. 

             In an interrupted time series study, a series of 

observations on the same outcome before and after the 

introduction of an intervention are used to test immediate and 

gradual effects of the intervention. A major strength of this 

design is its ability to distinguish the effect of the intervention 

from secular change. Estimating the intervention effect is 

done by comparing the trend in the outcome after 

intervention to the existing trend in the pre-intervention 

period and it is achieved through modifications to the 

standard regression analysis. In a basic segmented regression 

analysis, the time period is divided into pre and post 

intervention segments, and separate intercepts and slopes are 

estimated in each segment. Statistical tests of changes 

intercepts and slopes pre- to-post intervention are carried out 

[4].  

           ITS is to evaluate an intervention to reduce 

inappropriate use of key antibiotics with interrupted time 

series analysis. The intervention is a policy for appropriate 

use of alert antibiotics implemented through concurrent, 

patient-specific feedback is clinical pharmacists. Statistical 

significance and effect size were calculated by segmented 

regression analysis of interrupted time series of drug use and 

cost for 2 years before and after the intervention started. The 

segmented regression analysis of interrupted time series data 

explains us to assess in statistical terms, how much an 

intervention changed an outcome of interest, immediately and 

over time. When a separate control group is not available, the 

level and trend of pre-intervention segment serve as control 

for the post-intervention segment in single group time series. 

For estimating seasonal auto correlation, the auto regression 

model needs to evaluate correlations between error terms 

separated by multiples of 12 months. In the Three outcomes 

of ITS analysis,  first, change in level immediately after the 

intervention, second, difference between pre-intervention and 

post-intervention slopes and third, the estimation of monthly 

average intervention effect after the intervention [5]. 

       A segmented regression analysis is a powerful statistical 

method for estimates intervention effects in interrupted time 

series studies. Segmented regression model is fitted and 

constant of the model is estimated using least square 

regression line to each segment of the independent variable. 

The segmented regression equation is linear relationship 

between time and thus assume a linear relationship between 

time and the outcome within each segment. They proposed 

the below regression model to estimate the level and trend in 

mean number of prescriptions per patient before the three 

drug cap and the changes in level and trend following the 

camp in New Hampshire [6].    

III. METHODOLOGY 

 

     In this research paper we are fitted three models for 

interrupted data: 

   

Model I: 

 

 
0 1 2*tY t     (equation estimated value before 

intervention) + 
3  (equation estimated value after 

intervention)  

 

The data is divided into two parts, one is before smoke ban 

and another one is after smoke ban, the interrupted point is 

smoke ban day. 

Yt is time series value at time point t. 

β0 is constant. 

β1 is constant concerned to time  

β2 is constant with equation before intervention 

β3 is constant with equation after intervention. 
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               Equation before intervention and after intervention 

are chosen among straight line, power curve , exponential 

curve, parabola, polynomial of order 3, polynomial of order 

4, Polynomial of order 5 and polynomial of order 6. Using R
2
 

criteria, by estimating observed values for the best model to 

before intervention and after intervention and substituting in 

the above equation, we get 

       0 1 2 3*tY time BI AI   
 

     
 

For estimating the constants β0, β1, β2, and β3, we are using 

minimum least square estimation method. 

 

 Model II: Interrupted time series model using ARIMA 

 

  The model fitted is as follows 

           
0 1 2*tY t      (equation estimated value before 

intervention using ARIMA) +
3             (equation estimated 

value after intervention using ARIMA). 

 

Here Yt is time series value at time point t. 

        β0, β1, β2, and β3 are constant. 

        t is time. 

 

ARIMA (p,d,q) with different values of p, d and q are fitted 

for before intervention data and after intervention data. For 

choosing the best model among several models we use R
2
 

criteria. The fitted model using MLE model is 

      0 1 2 3* ( ) ( )tY t ARIMAforBI ARIMAforAI   
 

   
  

  

Model III: By using Adaptive smoothing model 

 

           The single exponential smoothing forecasting model 

requires the specifications of an α value and it has been 

shown that the mean absolute percentage error (MAPE) and 

Mean Square Error (MSE) measures depends on this choice. 

Adaptive Response Rate Single Exponential Smoothing 

(ARRSES) may have an advantage over Single Exponential 

Smoothing (SES), it allows the value of α to be modified in a 

controlled manner, as changes in the pattern of data occur. 

This characteristic seems attractive when hundreds (or) 

thousands of items require forecasting. 

  The basic equation for forecasting with the method of 

ARRSES is similar to an equation 

                  
1 (1 )t t t t tF Y F    

 

                  1 /t t tA M  
 

       1(1 )t t tA e A    
 

      1(1 )t t tM e M    
 

         t t te Y F   

Here β is a parameter between 0 and 1 and mod (||) denotes 

absolute values. 

In equation At denotes a smoothed estimate of forecast error 

and is calculated as a weighted average of At-1 and the last 

forecasting error €t. 

 Mt denotes a smoothed estimate of the absolute forecast 

error; being calculated as a weighted average of Mt-1 and the 

last absolute forecasting error |€t|. 

At and Mt gives single exponential smoothing estimates 

themselves. 

αt+1 =  |At/Mt| indicates that the value of αt  to be used for 

forecasting period(t+2) is defined as an absolute value of the 

ratio of At and Mt. Instead of αt+, we could have used αt in the 

above equation. we prefer αt+1  because ARRSES is often too 

responsive to changes, thus using αt+1  we introduce a small 

log of one period, which allows the system to “settle” a little 

and forecast in a more conservative manner. 

R
2
 CRITERIA: 

 

        In statistics, the coefficient of determination denoted by 

R
2
 is the proportion of the variance in the dependent variable 

that is predictable from the independent variables(s). It is a 

statistic used in the context of statistical models whose main 

purpose is either the prediction of future outcomes or the 

testing of hypothesis, on the basis of other related 

information. It provides a measure of how well observed 

outcomes are replicated by the model, based on the 

proportion of total variation of outcomes explained by the 

model. 

 

 A data set has n values y1, y2,……, yn each associated with a 

predicted value f1,f2,....fn. Define the residual as 
i i ie y f   

 

If   ̅ is the mean of the observed data then 

 

                         

1

1 n

i

i

Y y
n 

    

 The variability of the data set can be measured using three 

sums of squares formulas: 

 

   the total sum of squares (proportional to the 
variance of the data): 

                         

2

1

( )
n

tot i

i

SS y y


 
 

 The regression sum of squares, also called the 
explained sum of squares: 
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2

1

( )
n

reg i

i

SS f y


 
 

 The sum of squares of residuals, also called the 
residual sum of squares 

                                                                        

22

1

( )
n

res i i i

i i

SS y f e


   
 

 
The general definition of the coefficient of determination (R

2
) 

is 

            

2 1 res

tot

SS
R

SS
 

 
Relation to unexplained variance: 

In a general form, R
2
 can be seen to be related to the fraction 

of variance unexplained (FVU), since the second term 

compares the unexplained variance (variance of the model's 

errors) with the total variance (of the data): 

                   2 1R FVU   

Explained variance: 

 

 Suppose R
2
 =0.49, this implies that 49% of the variability of 

the dependent variable has been accounted for, and the 

remaining 51% of the variability is still unaccounted for. In 

some cases the total sum of squares equals the sum of the two 

other sum of squares. 

 

         
res reg totSS SS SS   

 

By using this, R
2
 is equivalent to  

 

              

2 /

/

res res

tot tot

SS SS n
R

SS SS n
 

 

Where n is the number of observations on the variables. In 

this, R
2
 is expressed as the ratio of the explained variance to 

the total variance. 

As squared correlation coefficient: 

        In linear least squares regression with an estimated 

intercept term R
2
 equals the square of the Pearson correlation 

coefficient between the observed y and modeled (predicted) f 

data values of the dependent variable. In linear least squares 

regression with an intercept term and a single  explanatory 

that is also equal to the squared Pearson correlation 

coefficient of the dependent variable y and the explanatory 

variable x. R
2
 value can be calculated as the square of the 

correlation coefficient between the original y and modeled f 

data values. 

INTERPRETATION: 

 

R
2
 is a statistic that will give some information about the 

goodness of fit of a model. In regression, the R
2
 coefficient of 

determination is a statistical measure of how well the 

regression predictions approximate the real data points. An R
2
 

of 1 indicates that the regression predictions perfectly fit the 

data. Values of R
2
 outside the range 0 to 1.In all instances 

where R
2
 is used, the predictors are calculated by ordinary 

least-squares regression: that is, by minimizing SSres. In this 

case R
2
 increases as we increase the number of variables in 

the model. 

ADJUSTED R
2   

or ( ̅2
): 

    The use of an adjusted R
2
 or ( ̅2

) is an attempt to take 

account of the phenomenon of the R
2
 automatically and 

spuriously increasing when extra explanatory variables are 

added to the model. It is a modification due to Henri Theil of 

R
2
 that adjusts for the number of explanatory terms in a 

model relative to the number of data points. The adjusted R
2
 

can be negative, and its value will always be less than or 

equal to that of R
2
. Unlike R

2
, the adjusted R

2
 increases only 

when the increase in R
2
 (due to the inclusion of a new 

explanatory variable) is more than one would expect to see by 

chance. If a set of explanatory variables with a predetermined 

hierarchy of importance are introduced into a regression one 

at a time, with the adjusted R
2
 computed each time, the level 

at which adjusted R
2
 reaches a maximum, and decreases 

afterward, would be the regression with the ideal combination 

of having the best fit without excess/unnecessary terms. The 

adjusted R
2
 is defined as 

               

2
2 1

1 (1 )
1

n
R R

n p


  

   

Where p is the total number of explanatory variables in the 

model, and n is the sample size. 

The principle behind the adjusted R
2
 statistic can be seen by 

rewriting the ordinary R
2
 as 

                   

2 1 res

tot

VAR
R

VAR
 

 

Where VARres =  SSres/n and  VARtot = SStot/n are the sample 

variances of the estimated residuals and the dependent 

variable respectively, which can be seen as biased estimates 

of the population variances of the errors and of the dependent 

variable. 

IV. RESULTS AND DISCUSSION 

The three intervention models are as follows. 

MODEL I: 
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0 1 2*tY t      (equation estimated value before 

intervention) + 
3  (equation estimated value after 

intervention)  

 For choosing the best model among the three, before 

intervention and after intervention are as follows 

(i) Straight line    is   y A Bx   

(ii) Polynomial equation of order 2 is  
2y A Bx Cx                                  

(iii) Polynomial equation of order 3 is                        

 2 3y A Bx Cx Dx     

(iv) Polynomial equation of order 4 is                 

 2 3 4y A Bx Cx Dx Ex      

(v) Polynomial equation of order 5 is                         
2 3 4 5y A Bx Cx Dx Ex Fx       

(vi) Polynomial equation of order 6 is                 
2 3 4 5 6y A Bx Cx Dx Ex Fx Gx        

(vii) Power curve is    By Ax  

(viii) Exponential curve is  Bxy Ae  

(ix) Logarithmic equation is *ln( )y A x B   

  For choosing the best model among different models using 

R
2
 criteria, the below table explains about R

2
 value for fitted 

models. 

 
                           Table-1 

MODEL Before Intervention 

R
2
 value  Equation  

Exponential 

curve 

0.488 Y = 728.9*e0.005x 

Linear Equation 0.479 Y = 4.453*x + 728.4 

Logarithmic 

Equation 

0.462 Y =53.23*ln(x) + 669.3 

Polynomial 
Equation of 

order   2 

0.494 Y = -0.085x2+7.614x+708.4 

            3 0.494 Y=-0.000x3-

0.048x2+7.060x+710.2 

            4 0.501 Y = -0.000x4+0.050x3-

1.281x2+17.52x+688.5 

            5 0.504 Y=0.00005x5-0.005x4+0.213x3-

.591x2+30.43x+669.5 

            6 0.584 Y = 0.00003x6-0.003x5+0.134x4-

2.600x3+23.41x2-78.21x+791.6 

Power Curve 0.479 Y = 675.9*x0.067 

By using R
2
, the best model for before intervention is 6th 

degree polynomial, i.e.                         

    Y = 0.00003x
6
-0.003x

5
+0.134x

4
-2.600x

3
+23.41x

2
-

78.21x+791.6 

 

 
 

Table-2 

MODEL                            After  Intervention 

R
2
 value  Equation  

Exponential 

curve 

0.244 Y = 795.1*e0.006x 

Linear Equation 0.237 Y = 5.141*x + 795.8 

Logarithmic 

Equation 

0.188 Y =37.62*ln(x) + 773.1 

Polynomial 
Equation of 

order   2 

0.244 Y = -0.156x2+8.906x+780.1 

            3 0.310 Y = -0.078x3-2.683x2-
18.94x+841.6 

            4 0.403 Y = 0.016x4-0.871x3+15.1x2-

88.56x+941.0 

           5 0.567 Y=0.003x5-0.216x4+4.156x3-  
31.73x2+86.50x+759.3 

           6 0.605 Y=0.000x6+0.028x5-

0.881x4+12.9x3-

87.35x2+238.6x+635.2 

Power Curve 0.189 Y = 775.3*x0.043 

By using R
2
, the best model for after intervention is 6

th
 degree 

polynomial, i.e. 

Y=0.000x
6
+0.028x

5
-0.881x

4
+12.9x

3
-87.35x

2
+238.6x+635.2 

The fitted equation for model I is  

 Yt=-70.5783+ (-0.06926)*T + 1.086385*(0.00003x
6
-

0.003x
5
+0.134x

4
-2.600x

3
+23.41x

2
-78.21x+791.6) + 

1.081243*(0.000x
6
+0.028x

5
-0.881x

4
+12.9x

3
-

87.35x
2
+238.6x+635.2) 

The RMSE for model I is 35.31417 

Model II: 

   The different ARIMA models for before and after 

intervention and their respective R
2
, stationary R

2
, The 

equation for model II is as follows 

  
0 1 2*tY t      (ARIMA before best estimated) + 

3  

(ARIMA after best estimated) 

 

The fitted equation for model II is 

 

Yt = -59.6905 + 0.050109*T + 1.069112 (ARIMA (6, 0,6) 

model) + 1.061186(ARIMA(6,0,5)   model) 

 

The RMSE for model II is 34.1375 

 

MODEL III:  

                 Another model for intervention is Adaptive 

smoothing model. 

 
                                                       Table-3 
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FORECAST 

Mon

th ACE 

forecast 

Ft  et  

smoth 

err At 

Absm 

oothed 

error  

Mt alpha t 

1-

alpha 

t ESS 

1 728 0 0 0 0 0 0 0 

2 659 728 -69 -41.4 41.4 1 0 4761 

3 791 659 132 62.64 95.76 0.65 0.35 17424 

4 734 791 -57 -9.14 72.5 0.13 0.87 3249 

5 757 783.59 

-

26.59 -19.61 44.95 0.44 0.56 707.028 

6 726 757 -31 -26.44 36.58 0.72 0.28 961 

7 760 734.68 25.32 4.62 29.82 0.15 0.85 641.102 

8 740 760 -20 -10.15 23.93 0.42 0.58 400 

9 720 751.6 -31.6 -23.02 28.53 0.81 0.19 998.56 

10 814 720 94 47.19 67.81 0.7 0.3 8836 

11 795 785.8 9.2 24.4 32.64 0.75 0.25 84.64 

12 858 795 63 47.56 50.86 0.94 0.06 3969 

13 887 854.22 32.78 38.69 40.01 0.97 0.03 

1074.52

8 

14 766 887 -121 -57.12 88.6 0.64 0.36 14641 

15 851 809.56 41.44 2.02 60.3 0.03 0.97 

1717.27

4 

16 769 851 -82 -48.39 73.32 0.66 0.34 6724 

17 781 796.88 

-

15.88 -28.88 38.86 0.74 0.26 252.174 

18 756 781 -25 -26.55 30.54 0.87 0.13 625 

19 766 759.25 6.75 -6.57 16.27 0.4 0.6 45.563 

20 752 766 -14 -11.03 14.91 0.74 0.26 196 

21 765 755.64 9.36 1.2 11.58 0.1 0.9 87.61 

22 831 765 66 40.08 44.23 0.91 0.09 4356 

23 879 825.06 53.94 48.4 50.06 0.97 0.03 

2909.52

4 

24 928 879 49 48.76 49.42 0.99 0.01 2401 

25 914 927.51 

-

13.51 11.4 27.87 0.41 0.59 182.52 

26 808 914 -106 -59.04 74.75 0.79 0.21 11236 

27 937 830.26 

106.7

4 40.43 93.94 0.43 0.57 

11393.4

28 

28 840 937 -97 -42.03 95.78 0.44 0.56 9409 

29 916 894.32 21.68 -3.8 51.32 0.07 0.93 470.022 

30 828 916 -88 -54.32 73.33 0.74 0.26 7744 

31 845 850.88 -5.88 -25.26 32.86 0.77 0.23 34.574 

32 818 845 -27 -26.3 29.34 0.9 0.1 729 

33 860 820.7 39.3 13.06 35.32 0.37 0.63 1544.49 

34 839 860 -21 -7.38 26.73 0.28 0.72 441 

35 887 854.12 32.88 16.78 30.42 0.55 0.45 

1081.09

4 

36 886 887 -1 6.11 12.77 0.48 0.52 1 

37 831 886.52 

-

55.52 -30.87 38.42 0.8 0.2 3082.47 

38 796 831 -35 -33.35 36.37 0.92 0.08 1225 

39 833 798.8 34.2 7.18 35.07 0.2 0.8 1169.64 

40 820 833 -13 -4.93 21.83 0.23 0.77 169 

41 877 830.01 46.99 26.22 36.93 0.71 0.29 2208.06 

42 758 877 -119 -60.91 86.17 0.71 0.29 14161 

43 767 792.51 

-

25.51 -39.67 49.77 0.8 0.2 650.76 

44 738 767 -29 -33.27 37.31 0.89 0.11 841 

45 781 741.19 39.81 10.58 38.81 0.27 0.73 

1584.83

6 

46 843 781 62 41.43 52.72 0.79 0.21 3844 

47 850 829.98 20.02 28.58 33.1 0.86 0.14 400.8 

48 908 850 58 46.23 48.04 0.96 0.04 3364 

49 1021 905.68 

115.3

2 87.68 88.41 0.99 0.01 

13298.7

02 

50 859 1021 -162 -62.13 132.56 0.47 0.53 26244 

51 976 944.86 31.14 -6.17 71.71 0.09 0.91 969.7 

52 888 976 -88 -55.27 81.48 0.68 0.32 7744 

53 962 916.16 45.84 5.4 60.1 0.09 0.91 

2101.30

6 

54 838 962 -124 -72.24 98.44 0.73 0.27 15376 

55 810 871.48 

-

61.48 -65.78 76.26 0.86 0.14 3779.79 

56 876 810 66 13.29 70.1 0.19 0.81 4356 

57 843 822.54 20.46 17.59 40.32 0.44 0.56 418.612 

58 936 843 93 62.84 71.93 0.87 0.13 8649 

59 912 923.91 

-

11.91 17.99 35.92 0.5 0.5 141.848 

              

TOTA

L 

237106.

6 

              MSE 

4018.75

6 

              

RMS

E 

63.3916

5 

  

 The above equations belongs to Adaptive smoothing model          

.     
1 (1 )t t t t tF Y F                          (1)  

           
1 /t t tA M                               (2) 

       1(1 )t t tA e A    
                               

(3) 

         
1(1 )t t tM e M                       (4) 

            
t t te Y F         

                           (5) 

The values, for example for e11, A11, M11, α12 and F11 are 

calculated as follows 

e11 = 795-785.4484 = 9.55157   (using 5) 

A11=0.6*9.55157+0.4*47.20868=24.61441 (using 3) 
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M11 = 0.6*|9.55157|+0.4*67.8032= 32.8522(using 4) 

  α12 = 24.61441/32.85224 = 0.749246(using 2) 

The forecast value for the period 12 can be computed using 

equation 1 is 

 F11 = 0.69626*814+0.30374*720 = 785.4484. 

The RMSE value for adaptive smoothing model is 63.39165. 

V. CONCLUSIONS 

Interrupted time series analysis is used month wise for smoke 

ban before intervention (2002-2004) and after intervention 

(2005-2006). 

We are fitted three models for interrupted smoke ban data. 

The three models are 

Model I  

0 1 2*tY t      (equation estimated value before 

intervention) + 
3  (equation estimated value after 

intervention)  

 

 The fitted equation is 

 

Yt = -70.5783+ (-0.06926)*t + 1.086385*(0.00003x
6
-

0.003x
5
+0.134x

4
-2.600x

3
+23.41x

2
-   78.21x+791.6) + 

1.081243*(0.000x
6
+0.028x

5
-0.881x

4
+12.9x

3
-

87.35x
2
+238.6x+635.2) 

 Model II  
 

The equation for model II is as follows 

 

    
0 1 2*tY t     (ARIMA before best estimated) + 

3  

(ARIMA after best estimated ) 

 

The fitted equation for model II is 

 

  Yt   =  -59.6905 + 0.050109*T + 1.069112 (ARIMA (6,0,6) 

model) + 1.061186(ARIMA(6,0,5)   model) 

 

Model III  

 Model III is constructed by using adaptive smoothing model. 

Among the above three models, the best model for data is 

selected using error criteria is given in table-4 

 

                                                  Table-4                                
  MODEL  RMSE 

Model I 35.31417 

Model II 34.1375 

Model III 63.39165 

 

 From the above table, the least RMSE is for model II 

(34.1375). So model II is the best model for the smoke ban 

data. 
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