

 © 2019, IJCSE All Rights Reserved 680

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

 An Empirical Study on Software Engineering in Mobile Applications and

Future Research Directions

R.Balamurugan

1*
, M.Ravichandran

2

1
Department of Computer Science, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India

2
 Department of Computer Science, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India

*Corresponding Author: bala2marudur@gmail.com, Tel.: 8610082911

Available online at: www.ijcseonline.org

Accepted: 10/Jan/2019, Published: 31/Jan/2019

Abstract— Nowadays, mobile devices have reached its popularity in greater heights, specifically the usage of smart phones has

extended its features in communication technology with rapid evolution. With regards to this, the developers are always

passionate about providing the smart ways and approaches through the Mobile App for the common users so that they have

smart lifestyle. To provide the smart apps which works on smart devices, the diversity is there in the usages of tools and

technologies. In addition to hardware rapid evolution, mobile applications are also increasing in their complexity and

performance to cover most the needs of their users. Both software and hardware design focused on increasing performance and

the working hours of a mobile device. Different mobile operating systems are being used today with different platforms and

different market shares. Like all information systems, mobile systems are vulnerable to several issues. In this paper survey on

software engineering paradigm in mobile applications are discussed by analyzing various existing approaches in the field of

mobile software testing, mobile software quality assurance and mobile application security threats.

Keywords—: Mobile Application Software, Malware detection, Code Metric, Maintenance, Quality assurance

I. INTRODUCTION

Mobile applications become strategic business tools and have

changed the business landscape. They have also expanded to

meet the communication and information sharing needs of

social networks. Nowadays, there are variety of new

scenarios and applications for mobile devices. Indeed, users

and developers expect reliability, ease of use, performance

and security. Unfortunately, the quality of mobile

applications are lower than expected. While mobile

applications are becoming so extraordinarily adopted, it is

still unclear if they deserve any specific testing approach for

their verification and validation. This paper wants to

investigate new research directions on mobile applications

testing automation and its strategy, mobile applications

software quality, mobile application security threats

Software testing of mobile applications is not a trivial task

due to several factors such as the variety of inputs that a

mobile application normally requires and the heterogeneity

of the technologies used to implement them. The variety of

inputs that a mobile application normally requires (such as

user input, input context and environment) makes it very

difficult to design appropriate test cases to detect faults.

Several studies state that the importance in the context

which mobile applications are executed to ensure quality [7,

8, 9]. Performing testing on multiple platforms is needed in

order to ensure quality.

This paper provides an overview of important software

engineering research issues related to the development of

applications that run on mobile devices. Among the topics

are development processes, tools, user interface design,

application portability, quality, and security. While

application development for mobile devices get back at least

10 years, there has been exponential growth in mobile

application development since the iPhone AppStore opened

in July, 2008. Since then, device makers have created outlets

for other mobile devices, including Android, BlackBerry,

Nokia Ovi, Windows Phone, and more. Industry analysts

estimate that there are more than 250,000 applications are

available through the various stores and marketplaces, some

of them are available for multiple types of devices. The work

have recently conducted a small survey of mobile developers

[1], using available mobile developer forums to solicit

respondents. A key goal of the survey was to gain a better

understanding of development practices for mobile

applications. The conclusions are included the following

points:1) Most of the applications were relatively small,

averaging several thousand lines of source code, with one or

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 681

two developers responsible for conceiving, designing, and

implementing the application.

2) There was a sharp divide between “native”

applications, those that run entirely on the mobile device, and

web applications, which have a small device-based client

with execution occurring on a remote server.

3) Developers adhered quite well to recommended sets

of “best practices” but rarely used any formal development

processes.

4) Developers did very little organized tracking of their

development efforts and gathered few metrics.

II. LITERATURE SURVEY

MobiGUITAR (Mobile GUI Testing Framework) [1]

provided automated GUI-driven testing of Android apps. It's

based on observation, extraction, and abstraction of GUI

widgets' run-time state. The abstraction is a scalable state

machine model that, together with test coverage criteria,

provides a way to automatically generate test cases.

Uskov [2] focused on main MSE topics in Mobile

Computing curriculum. Research of MSE-focused

programming methodologies, analysis models in MSE,

design and development models in MSE, including

architectural models, information models, functional models,

interaction models, navigation models, graphic user interface

(GUI) hierarchical models, analysis of integrated

development environments (IDEs) for various mobile

platforms (Android, Windows Phone, etc.), testing strategies

and techniques for mobile software systems, mobile software

quality management, security issues of mobile software

systems, and MSE-focused implementation methods.

Kai Qian et al [3] presented mobile device-based hands-on

lab ware (series of lab modules) for computer network and

security learning, which is guided by authentic learning

principles to immerse students in a real-world relevant

learning environment. By using this lab ware in teaching

computer network, mobile security, and wireless network

classes. The student feedback shows that students can learn

more effectively when they have hands-on authentic learning

experiences.

Li et al [4] developed a feature vector is extracted from the

Android Manifest file, which combines the permission

information and the component information of the Android

application. Combined with the Naive Bayes classification

algorithm, this approach proposes a malicious application

detection method based on the Android Manifest file

information. This approach is a static method of malware

detection which means that applications are not executed or

analyzed at run time for behavioral analysis. So it cannot

detect any new malware which are capable of repackaging

and obfuscation to bypass their inner mechanisms.

Fereidooni et al [5] introduced a system to detect malicious

Android applications through statically analyzing

applications’ behaviors. ANASTASIA provides a complete

coverage of security behaviors. It utilizes large number of

statically extracted features from various security behavioral

characteristics of an application. This approach is a static

method of malware detection so it cannot protect the device

from Zero Day attacks and malwares capable of modifying

themselves.

Akhuseyinoglu et al [6] uses an automated feature-based

static analysis method to detect malicious mobile

applications on Android devices. This method uses metadata

of applications and Naïve Bayes algorithm for malware

detection. This approach is a static method of malware

detection so it cannot protect the device from malwares that

can transform themselves based on the ability to translate,

edit and rewriting their own code. The work focuses on

observing the behavior of the malicious software while it is

actually running on a host system. The dynamic behaviors of

an application are conducted by the system call sequences at

the end. Hence, they observe the system call log of each

application, use the same for the construction of this dataset,

and finally use this dataset to classify an unknown

application as malicious or benign.

Asmau Usman et al [10] proposed an approach for testing

mobile apps considering the two sets of events: GUI events

which identified through static analysis of bytecode and

context events obtained from analysis of manifest.xml file.

Results from the experimental evaluation indicated that our

approach is effective in identifying and testing context

events.

Lianfa Li et al [11] the authors proposed two methods of data

mining static code metrics to enhance defect-proneness

prediction. Given little non-metric or qualitative information

extracted from software codes, they first suggest to use a

robust unsupervised learning method, Shared Nearest

Neighbors (SNN) to extract the similarity patterns of the

code metrics. These patterns indicate similar characteristics

of the components of the same cluster that may result in

introduction of similar defects. By using the similarity

patterns with code metrics as predictors, defect-proneness

prediction may be improved. The second method uses the

Occam's windows and Bayesian model averaging to deal

with model uncertainty: first, the datasets are used to train

and cross-validate multiple learners and then highly qualified

models are selected and integrated into a robust prediction.

Claire Le Goues et al [12] the authors proposed to augment a

temporal-property miner by incorporating code quality

metrics. They measure code quality by extracting additional

information from the software engineering process and using

information from code that is more likely to be correct, as

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 682

well as code that is less likely to be correct. While used as a

preprocessing step for an existing specification miner, their

technique identifies which input is most indicative of correct

program behavior, which allows off-the-shelf techniques to

learn the same number of specifications using only forty five

percent of their original input.

Hamand et al [13] attempt malware detection by inspecting

other application run-time parameters, such as CPU usage,

network transmission, and process and memory information.

Mas’ud et al. [14] also included Android system calls in the

detection strategy. Furthermore, Elish et al. [15] proposed a

single-feature classification system based on user behavior

profiling. DroidChain authors [16] proposed a novel model

which analyze static and dynamic features of applications

assuming different malware models.

Rahman et al. [17] investigated how effectively static code

can be used to predict security risk of Android applications.

Based on twenty one static code metrics of 1,407 Android

applications, and using radial-based support vector machine

(r-SVM). Syer et al. [18] has examined the relationship

between files defect-proneness and platform dependence in

Android apps. They found that source code files that are

defect-prone have a higher dependence on the platform than

defect-free files. The previous studies also investigated that

the undesirable effects of Android apps low-quality source

code.

Belal Amro [19], studied and analyzed different malware

detection techniques used for mobile operating systems. He

focused on two competing mobile operating systems –

Android and iOS. He assets each technique by summarizing

its advantages and disadvantages. The aim of the work is to

establish a basis for developing a mobile malware detection

tool based on user profiling.

Ana Rosario Espada et al [20] proposed the use of model-

based testing to describe the potential behaviors of users

interacting with mobile applications. These behaviors are

modeled by composing specially-designed state machines.

These composed state machines can be exhaustively

explored by using a model checking tool to automatically

generate all possible user interactions. Each generated trace

model checker can be interpreted as a test case to drive a

runtime analysis of actual applications. They have

implemented a tool that follows the proposed methodology to

analyze ANDROID devices by using the model checker

SPIN as the exhaustive generator of test cases.

Ahmad et al [21] focused on analyzing and measuring the

maintainability of Android mobile applications by using

Object Oriented Metrics and Android Metrics. The purpose

of this paper is to assess the impact all of these metrics on the

maintainability of Android applications and choose the

metrics that has the highest impact.

Pardeep Kumar et al [22] developed a combination of UML

class diagram, use cases and activity diagram are used to

discover changes at both syntax and semantic level.

Additionally, agents developed in java agent development

environment are also used to collect these changes from

different stake holders in the distributed environments.

Tingting Yu et al [23] proposed a set of novel static code

metrics based on the unique properties of concurrent

programs. They also leverage additional guidance from

dynamic metrics constructed based on the mutation analysis.

Their evaluation on four large open source projects shows

that ConPredictor improved both within-project defect

prediction and cross-project defect prediction compared to

the traditional features.

III. PROBLEM DEFINITION

 There is a lack of knowledge in automation of test

cases and optimal software testing strategies for

mobile applications. This may greatly affect the

performance of the mobile software’s and its

functionals. The approaches to generate automated

test cases and optimal testing strategies have to be

defined and modeled.

 The quality of mobile applications is major cause of

reliability and flexibility in design and construction

of applications. The code metrics are not well-

defined in context of mobile application-based

software engineering. The metrics have to be

evaluated for proper analyses of the quality and

maintenance of mobile software’s.

 The security threats are high in mobile applications

due to its wide and open usage by several

community applications. Which has high degree of

accessibility in archiving personal information

stored on mobile phone? There is no proper security

mechanism to handle the malware attacks in mobile

based applications thus an intelligent security

prevention approach has to be developed.

IV. CONCLUSION

The paper analyzed detailed study on impact of mobile

software quality analysis, mobile application testing and

mobile software malware detection. Further investigation on

these areas provides motivation to develop an optimal

approach for developing automated test cases, determining

the quality of mobile applications to enhance its

performance. And planning in future to develop a prevention

mechanism to overcome security threats which attacks the

mobile based applications.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 683

REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta and A. M.

Memon, "MobiGUITAR: Automated Model-Based Testing of

Mobile Apps," in IEEE Software, vol. 32, no. 5, pp. 53-59, Sept.-

Oct. 2015.

[2] L. Uskov, "Mobile software engineering in mobile computing

curriculum," 2013 3rd Interdisciplinary Engineering Design

Education Conference, Santa Clara, CA, 2013, pp. 93-99.

[3] Kai Qian ; Yong Shi ; Lixin Tao ; Ying Qian, Hands-On Learning

for Computer Network Security with Mobile Devices, 2017 26th

International Conference on Computer Communication and

Networks (ICCCN)

[4] X. Li, J. Liu, Y. Huo, R. Zhang, Y. Yao, 'An Android malware

detection method based on Android Manifest file', International

Conference on Cloud Computing and Intelligence Systems

(CCIS), 2016, pp. 239-243.

[5] H. Fereidooni, M. Conti, D. Yao, A. Sperduti, 'ANASTASIA:

ANdroidmAlware detection using STaticanalySIs of Applications',

8th IFIP International Conference on New Technologies, Mobility

and Security (NTMS), 2016, pp. 1-5.

[6] N. B. Akhuseyinoglu, K. Akhuseyinoglu, 'AntiWare: An

automated Android malware detection tool based on machine

learning approach and official market metadata', IEEE 7th Annual

Ubiquitous Computing, Electronics & Mobile Communication

Conference (UEMCON), 2016, pp. 1-7

[7] Domenico Amalfitano, Anna Rita Fasolino, Portfirio Tramontana,

“A GUI Crawling-based technique for Android mobile application

Testing” – IEEE (2011)

[8] Pallavi Raut, Satyaveer Tomar, “Android Mobile Automation

Framework” – IJECS (2014).

[9] Anuja Jain, Swarnalatha P, M R. Ghalib, S. Prabhu, “Web-Based

Automation Testing Framework” – IJCA (2012)

[10] Asmau Usman, Noraini Ibrahim, Ibrahim Anka Salihu, Test Case

Generation from Android Mobile Applications Focusing on

Context Events, ICSCA 2018, 7th International Conference on

Software and Computer Applications, pages 25-30, 2018

[11] Lianfa Li , Hareton Leung , Mining Static Code Metrics for a

Robust Prediction of Software Defect-Proneness, International

Symposium on Empirical Software Engineering and Measurement,

Sept. 2011

[12] Claire Le Goues and Westley Weimer, Measuring Code Quality to

Improve Specification Mining, IEEE Transactions on Software

Engineering, Vol. 38, No. 1,2012.

[13] H.-S.Hamand M.-J.Choi, “Analysis of Android malware detection

performance using machine learning classifiers,” in Proceedings of

the 2013 International Conference on Information and

Communication Technology Convergence, ICTC 2013, pp. 490–

495, October 2013.

[14] M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R.

Yusof, “Analysis of features selection andmachine learning

classifier in android malware detection,” in Proceedings of the 5th

International Conference on Information Science and

Applications, ICISA ’14, pp. 1–5, IEEE, May 2014.

[15] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang,

“Profiling user-trigger dependence for android malware

detection,” Computers & Security, vol. 49, pp. 255–273, 2015.

[16] Z. Wang, C. Li, Z. Yuan, Y. Guan, and Y. Xue, “DroidChain: A

novel Android malware detection method based on behavior

chains,” Pervasive and Mobile Computing, vol. 32, pp. 3–14,

2016.

[17] Rahman, A., Pradhan, P., Partho, A., Williams, L.: Predicting

Android application security and privacy risk with static code

metrics. In: Proceedings of the 4th International Conference on

Mobile Software Engineering and Systems, pp. 149–153. IEEE

Press (2017).

[18] Syer, M.D., Nagappan, M., Adams, B., Hassan, A.E.: Studying the

relationship between source code quality and mobile platform

dependence. Software Quality Journal, 23(3), 485–508 (2015)

[19] Belal Amro, Malware Detection Techniques for Mobile Devices,

International Journal of Mobile Network Communications &

Telematics (IJMNCT) Vol.7, No.4/5/6, December 2017.

[20] Ana Rosario Espada, Marıa del Mar Gallardo, Alberto Salmeron,

Pedro Merin, Using Model Checking to Generate Test Cases for

Android Applications, Tenth Workshop on Model-Based Testing

(MBT 2015, EPTCS 180, 2015, pp. 7–21, 2017 8th International

Conference on Information Technology (ICIT), IEEE, 2017

[21] Ahmad A. Saifan, Areej Al-Rabadi, Evaluating Maintainability of

Android Applications, 8th International Conference on

Information Technology (ICIT), 2017

[22] Pardeep Kumar, Arora Rajesh Bhatia, Agent-Based Regression

Test Case Generation using Class Diagram, Use cases and Activity

Diagram, Procedia Computer Science, Volume 125, Pages 747-

753, 2018.

[23] Tingting Yu , Wei Wen, Xue Han, Jane Huffman Hayes Member,

ConPredictor: Concurrency Defect Prediction in Real-World

Applications , IEEE Transactions on Software Engineering , 2018.

Authors Profile

Mr.R.Balamurugan pursed Bachelor of Computer
Technology from Bharathiar University,
Coimbatore in 2001 and Master of Computer
Applications from Bharathiar University in year
2004. He is currently pursuing Ph.D. and currently
working as Assistant Professor in Department of
Computer Science, Sri Ramakrishna Mission
Vidyalaya College of Arts and Science, Bharathiar
University, Coimbatore since 2005. He has published more than 02
research papers in reputed conferences. His main research work
focuses on Software Enginnering, Mobile Computing, Distributed
Computing. He has 14 years of teaching experience and 5 years of
Research Experience.

Dr.M.Ravichandran Bachelor of Science from
Madras University and Master of Science from
Bharathiar University in year 1986. He is
currently working as Associate Professor in
Department of Computer Science, Sri
Ramakrishna Mission Vidyalaya College of Arts
and Science, Bharathiar University , since 1989.
He has published more than 8 research papers in
reputed international it’s also available online. His main research
work focuses on Software Engineering,Data Mining and Big Data
Analytics. He has 29 years of teaching experience and 18 years of
Research Experience.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Kai%22&searchWithin=%22Last%20Name%22:%22Qian%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Yong%22&searchWithin=%22Last%20Name%22:%22Shi%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Lixin%22&searchWithin=%22Last%20Name%22:%22Tao%22&newsearch=true&sortType=newest
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Ying%22&searchWithin=%22Last%20Name%22:%22Qian%22&newsearch=true&sortType=newest
http://www.icsca.org/
https://ieeexplore.ieee.org/author/38009230500
https://ieeexplore.ieee.org/author/37361133500
https://www.sciencedirect.com/science/article/pii/S1877050917328648#!
https://www.sciencedirect.com/science/journal/18770509
https://www.sciencedirect.com/science/journal/18770509/125/supp/C
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

