

 © 2019, IJCSE All Rights Reserved 657

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Vol.-7, Issue-3, March 2019 E-ISSN: 2347-2693

Software Comprehension Using Open Source Tools: A Study

Jyoti Yadav

Department of Computer Science, Savitribai Phule Pune University, Maharashtra, India

*Corresponding Author: jyo_yadav@yahoo.co.in, Tel.: 9881252910

DOI: https://doi.org/10.26438/ijcse/v7i3.657668 | Available online at: www.ijcseonline.org

Accepted: 12/Mar/2019, Published: 31/Mar/2019

Abstract: Software applications developed in recent times are written in lakhs of lines of code and have become increasingly

complex in terms of structure, behaviour and functionality. At the same time, development life cycles of such applications

reveal a tendency of becoming increasingly shorter, due to factors such as rapid evolution of supporting and enabling

technologies. As a consequence, an increasing portion of software development cost shifts from the creation of new artefacts to

the adaptation of existing ones. A key component of this activity is the understanding of the design, operation, and behaviour of

existing artefacts of the code. For instance, in the software industry, it is estimated that maintenance costs exceed 80% of the

total costs of a software product’s lifecycle, and software understanding accounts for as much as half of these maintenance

costs. Software Comprehension is a key subtask of software maintenance and evolution phase, which is driven by the need to

change software. This paper will help in enhancing the ability of the developers to read and comprehend large pieces of

software in an organized manner, even in the absence of adequate documentation by using existing open source tools. It

highlights the program elements, components, its analytical solutions for understanding, comprehensions and extension.

Keywords—beautifiers, profilers, slicers, top-down, version control systems

I. INTRODUCTION

One of the features of working in software evolution is the

constant need to modify and update software systems that are

unaccustomed, or only partly understood. However, evidence

suggests that programmers who have a better understanding

of the system as a whole are able to introduce changes into

the system with fewer defects than those with a weaker

understanding. The number of existing software to be

maintained is much greater than the number of software

newly developed each year. Their maintenance is thus both

costly and extremely important. The ease with which a

software can be modified and updated after it has been

delivered to the customer depends in part upon how well it

was constructed in the first place. Many of the programming

techniques like code reusability, object oriented features,

modular design etc. are aimed at making software easy to

maintain once it is deployed. But, no matter how well we

design and develop software nor how carefully requirement

specifications are noted, we can never predict exactly what

modifications the users will demand in the long run, nor what

technological advances will affect the software. Nor can we

predict the amount of cost that will be incurred in making the

required changes. Software change is therefore an inexorable

reality, regardless of how skillful the initial programmer was.

To obfuscate matters further, modifying an active software is

a very different and a difficult task from developing a new

software from scratch. For one thing, modifications must be

made without causing any negative impact on the rest of

functionality of the software. Hence, making changes to an

existing piece of software under these conditions is risky and

indeed very challenging. Thus understanding or

comprehending the software plays a very crucial role during

software maintenance phase.

The software needed to run all of Google’s Internet services

right from Google Search, Google Maps, Google Docs,

Google+, Google Calendar, Gmail, YouTube, and every

other Google Internet service, spans around two billion lines

of code, all sitting in a single repository. Google is an

extreme case. But its example shows how complex software

has grown in the Internet age—and how we’ve changed our

coding tools and philosophies to accommodate this added

complexity. It is estimated that the maintenance including

minor modifications, enhancements, test hypotheses, code

navigation etc. of existing system consume 50-80% of the

resources in the total software budget. While traditional

software engineering methods focuses on improving the

productivity of the software development process and the

quality of systems under development or being planned,

software comprehension addresses the complementary

issues. Programmers do not use sophisticated and dedicated

software comprehension tools. In fact, they are un-known to

the software comprehension functionality and features that

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 658

exists in the Integrated Development Environments they use

regularly.

Software Comprehension (SC) is a domain of computer

science concerned with the ways developers/programmers

maintain huge source code and identify cognitive processes

involved. SC is a sub-branch of software engineering

maintenance phase that consumes about half of the time

spent by the programmers who have to explore a systems’

source code to find and understand the sub-set of the code

which is relevant to their current job. The term software

comprehension means understanding large sources codes

written by someone else. There has been a constant flow of

work into techniques, tools and methods for improving

developers/programmers ability to understand software.

Many researchers are of the opinion that developers follow

pragmatic comprehension strategies depending on context

and try to avoid comprehension whenever possible.

Developers are of the view that standards, experience, and

personal communication facilitate comprehension. The group

size, its division, and open-source experience influence their

knowledge sharing and access behavior giving importance to

face-to-face communication.

Rest of the paper is organized as follows, Section I contains

the introduction to Software Comprehension, Section II lists

the related work, Section III details a broad survey of open

source software comprehension tools used for

comprehending large code which is the main crux of the

paper, Section IV concludes the proposed research work with

future directions and Section V lists down the references.

II. LITERATURE SURVEY

With the increasing demand, the amount of software that is

being used and developed is growing. The size of software is

becoming enormously larger. After the software is been put

into use, software maintenance activities such as correction,

expansion and improvement begin. Software maintenance is

a process to analyze, understand, modify and re-confirm the

software. The software maintenance problems are important

issues the current software industry faces. Accurate, rapid

and comprehensive understanding of program is the key to

successful software maintenance. Thus, analyzing and

understanding the program is the first step to maintain

software. Program comprehension is to make clear “what a

program does” and “how a program does” through certain

facilities and methods. Software comprehension generally

has four tasks, which are identifying program unit, tracing

control flow, tracing data flow and integrating program logic.

Research of software comprehension is very important for

software development, management and maintenance,

especially for system upgrades of legacy software.

Developers/programmers spend most of their time

constructing huge and complex software applications, an

activity termed as programming, which is according to [1] “a

kind of writing”. Writing code is a human and mental

activity. The more familiar we are with a program, the easier

it is to understand the impact of any modification we may

want to perform, i.e., familiarity has an important influence

on software comprehension strategies [2]. Software

Comprehension can be defined as “A person understands a

program when able to explain the program, its structure, its

behavior, its effects on its operation context, and its

relationships to its application domain in terms that are

qualitatively different from the tokens used to construct the

source code of the program [3].” Habitability is the

characteristic of source code that enables programmers,

coders, bug-fixers, and people coming to the code later in life

to understand its construction and intentions and to change it

comfortably and confidently. Developers should feel at

home, and be able to place their hands on any item without

having to think deeply about its location [4]. The

comprehensive understanding of a large software system is a

tedious job because of the enormous lines of code and

complexity that such software systems exhibit. The

problems encountered while comprehending the source code

directly influences the time spent on software

comprehension. The 80-20 rule applies to program creation

and maintenance. Wherein 80% of time is spent on

maintenance activity and 20% of the time spent creating the

software. Of the maintenance time 20% is spent changing

while 80% of the time is spent just trying to understand what

the code is written for in the first place.

Though majority of the time is spent in reading code, there

been very little efforts and research put into tools that help

software comprehension. When a novice maintenance

programmer is given the task to maintain, debug or enhance

a complex and sophisticated code where the documentation

is scant the programmer indeed gets disconcerted. Following

are the list off few questions that shall be taken into

consideration while focusing on software comprehension:

• What really do the maintenance programmer wants?

• What would make comprehending complex software

simpler?

• How can we display complex software in an

understandable way?

• What part(s) of the software need to be focused?

• Will a change to module ‘A’ affect the functionality of

module ‘B’?

• And, most critically, “where to start from?”

Majority of software development effort is spent on

maintaining existing systems rather than developing new

ones. It is estimated that around 50-75% of time is spent on

comprehending or understanding the program code.

Estimates of the proportion of resources and time devoted to

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 659

maintenance range from 50% to 75%. Majority of the time

and effort of the software maintenance process, in turn, is

devoted to understanding the system being maintained. 47-

62% of time spent on actual enhancement and correction

tasks, respectively, are devoted to comprehension activities

which involve reading the documentation, scanning the

source code, and understanding the changes to be made [5].

The implications are that if we want to improve software

development, we should look at maintenance, and if we want

to improve maintenance, we should facilitate the process of

understanding existing programs using modularizations [6].

Integrated development environments provide a number of

facilities to support software development, such as source

code browsers, refactoring engines, test runners etc.

Despite common belief, developers do not spend most time

coding. Approximately 50 to 90% of development time is

spent on code orientation that is navigation and

understanding of source code which includes reading of local

source code and documentation, searching the internet for

code examples, but also seeking help of other developers.

This gives rise to the need for development tools that provide

support for the code orientation hints that developers require.

Furthermore the development tools need to tap

unconventional information from the source code in order to

help the developers that would be out of their reach without

tool support.

The process of learning about the domain from the code

which is a prerequisite of code reengineering is discussed in

[7]. The paper details the similarities and overlaps between

software comprehension and human learning. Authors of [8]

present a framework to support researchers in planning and

conducting experiments regarding software comprehension.

The authors compare two software comprehension tools viz.

PARAMAT and the PAP recognizer targeted to support

automatic parallelization, discussing the trade-off between

the generality of one and speed of the other [9]. A study [10]

leverages interaction data that is collected across many

applications by the developers and find that the developers

spend ~58% of their time on software comprehension

activities, taking into consideration the impact of the

programming language, developers experience and the

project phase. It finally highlights the importance of several

research directions needed to reduce software comprehension

time. Integrative levels of software comprehension such as

the element level, the percept level, the concept level, the

subject level and the domain level have been demonstrated

using object oriented testing framework jUnit as a case study

[11].

The work of [12] aims at identifying tasks that can improve

novices' software comprehension. The study is to validate the

classification of cognitive tasks as in Bloom taxonomy. An

online survey was conducted on a number of programming

instructors as well as developers. The respondents were

asked to place each of the fourteen identified tasks into one

of the six cognitive categories of revised Bloom taxonomy.

The findings showed that most of the respondents agreed

with the classification. 3D visualization of software system is

applied on large systems as it is useful for software

comprehension that leads to clarity about the overall

structure of the system [13]. Various types of slicing

techniques like static, dynamic, quasi, amorphous, forward

and backward which comes under the broad category of

syntactic and semantic slicing is discussed along with its

application in areas like debugging, cohesion measurement,

comprehension, maintenance and re-engineering and testing

are highlighted in the paper [14].

The slicing results obtained using Frama-C and WP are

compared and discussed in [15]. The author of [16] explore

whether software comprehension tools enhance the way that

programmers understand programs. Experimental

observations from three tools viz. Rigi, SHrimMP, and

SNiFF+ are compared for browsing program source code and

exploring software structure. Some authors have used

program summarization techniques to support software

comprehension [17]. The maintenance and evolution of

large-scale code is considered based on questions that relate

to scalability of existing experimental results with small

programs, validity and credibility of results based on

experimental procedure and challenges of data available in

work done by [18]. A systematic literature survey on

software comprehension through dynamic analysis is carried

out by [19]. The authors also present an attribute framework

that can be used to characterize papers in the area of software

comprehension through dynamic analysis. Two empirical

studies have been performed to report that programmers have

two types of programing knowledge: programming plans and

rules of programming discourse by [20]. In the schema based

approach the role of semantic structures is emphasized

whereas in the control flow approach the role of syntactic

structures is emphasized by the author of [21]. Studies show

that according to the understanding the knowledge used may

be related to different kinds of information: data-flow

relations, functional relations or control-flow relations.

Programming plans formalize information on data flow and

functions whereas syntactic constructs reflect the structure of

the program as described with control flow relations.

Research efforts aiming at addressing challenges in software

comprehension can be characterized by both the tools that

are used to assist a comprehension task as well as the

cognitive theories that provide explanations on how

developers understand software. Although research in the

field of software comprehension has considerably evolved

over the past 20 years and many theories have been proposed

to explain how programmers may comprehend software,

there are still open issues that require further exploration.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 660

The goals of the research is to investigate the automated tools

a developer can use for understanding the software.

Therefore the research question being explored in this paper

is: How and which open source tools can a

programmer/developer use to ease the task of software

comprehension?

III. A BROAD SURVEY OF OPEN SOURCE TOOLS USED

FOR SOFTWARE COMPEHENSION

Drupal web content management open source software code

is used as a case study to explain software comprehension in

detail since it has a strong architecture, is reliable, secure,

flexible, and scalable and can be integrated with third party

applications. The paper reports output of various practical

experiments carried out to comprehend programs. Scripts

used for comprehending a program have been compiled and

executed on Linux (Ubuntu 16.4 LTS) operating system.

Drupal (Version 5.x, 6.x, 7.x and 8.x) was considered for

understanding the working of various tools.

3.1. A Commentary on Software Comprehension

This section briefly discusses the highlights and importance

of software comprehension. Software comprehension plays a

crucial role during the software maintenance phase. The

programmers spent most of their time with comprehending

source code, and maintenance is the main cost factor in

software development. Thus, if we improve software

comprehension, we can save considerable amount of time

and cost. To improve, software comprehension, we have to

measure it first. However, software comprehension is a

complex, internal cognitive process that we cannot observe

directly though empirical research is applied in software

engineering. To bridge this gap, we support researchers in

planning and conducting experiments regarding software

comprehension. This paper lists down various strategies and

preferred tools that a developer can use to comprehend

programs. Program understanding tools should enhance and

ease the developer’s job of reading and understanding

massive source codes.

Programmers use Integrated Development Environments

(IDEs) to read, understand, and write source code. IDEs

provide a number of facilities to support software

development, such as source code browsers, profilers, slicers,

test runners etc. While using an IDE, developers generate a

large number of events, for example, browsing the source

code of a method, editing the body of a method, or inspecting

an object at runtime. Following is a list of various models

and analysis techniques that support soft-ware

comprehension:

3.2. Overview of Software Comprehension Models

Basically, to understand the source code, the developers

typically use either top-down or bottom-up comprehension.

Based on amount of domain knowledge, there are three

different kinds of comprehension models like top-down

models, bottom-up models, and integrated models. In top-

down models, if the programmers are familiar with a

program’s domain (e.g., operating systems), they understand

programs top-down. First, they state a general hypothesis

about a program’s purpose. To this end, programmers

compare the current program with familiar programs and

scheduling strategies of that domain. During that first step,

they ignore details and only focus on relevant facets for

building the hypothesis. Bottom-up models, start to

understand a program by examining details of a program—

the statements or control constructs that comprise the

program. Statements that semantically belong together are

grouped into higher level abstractions, called chunks. If

enough chunks are created, programmers leave the statement

level and integrate those chunks to further higher level

abstractions. For example, if programmers recognize that a

group of statements have a high level purpose, they create

one chunk and then refer to that chunk for e.g. as “searching

an element in a list”, not the single statements.

When further examining the program, programmers combine

these chunks into larger chunks like implementing

scheduling strategies, until they have a high-level

understanding of a program. Integrated models combine top-

down and bottom-up comprehension. For example, if

programmers have domain knowledge about a program, they

form a hypothesis about its purpose. During the

comprehension process, they encounter several fragments

that they cannot explain using their domain knowledge.

Hence, they start to examine the program statement by

statement, and integrate the newly acquired knowledge in the

hypotheses about the source code. Usually, programmers use

top-down comprehension where possible and bottom-up

comprehension only where necessary, because top-down

comprehension is more efficient. One of the examples of

integrated models divide software comprehension into four

processes, where three of them are comprehension processes

that construct an understanding of the code and the fourth

provides the knowledge necessary for the current

comprehension task.

3.3. Software Comprehension through Open Source

Tools

Figure 1 list down various free and open source tools that can

be used to ease software comprehension activity.

3.3.1. Document Generator

Code can be hard to understand, analyze and reverse

engineer if no help is given. Such reverse engineering is

required if the code is to be updated, corrected or parts of it is

to be reused. Documentation makes it easier to come back to

the code after some time. It makes sharing work with others

much easier. The code should be sufficiently commented.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 661

The idea of Doxygen is to use the comments and

commenting capabilities in code to create the documentation.

For the programmer this means that comments should be left

in somewhat more organized manner, but for that really nice

documentation can be compiled from the comments.

Generated Document (Doxygen) is automatically updated

when code changes assuming that the comments in the code

changes as well. Doxygen is a program that can look into

your source files, extract comments and generate useful

documentation. It is especially great when used with object

oriented languages such as C, C#, PHP, Java, Python etc.

Doxygen can generate an on-line documentation browser in

HTML and/or an off-line reference manual in LATEX from a

set of documented source files. It also supports generating

output in RTF (MS-Word), PostScript, hyperlinked PDF,

compressed HTML, and UNIX man pages. The

documentation is extracted directly from the sources, which

makes it much easier to keep the documentation consistent

with the source code. Doxygen can be configured to extract

the code structure from undocumented source files. This is

very useful to quickly find your way in large source

distributions. Doxygen can also visualize the relations

between the various elements by means of dependency

graphs, inheritance diagrams, and collaboration diagrams,

which are all generated automatically. You can also use

doxygen for creating normal documentation.

3.3.2. Code Reading

Online accessible code can be processed with tools to

enhance reading efficiency and understanding. Following are

the list of tasks that could be performed on code:

 Identify the declaration of a particular entity to determine

the type of function, variable, method, template, or

interface.

 Locate where a particular entity is defined, for example,

find the body of function or class.

 Go through the places where an entity is used.

 List deviations from coding standards.

 Discover code structures that might help you understand

a given fragment.

 Find comments explaining a particular feature.

 Check for common errors.

 View the code structure.

 Understand how the code interacts with the environment.

This section discusses code reading tools that can be used to

automate the above tasks and perform them in the most

efficient manner. In addition, modelling tools can often help

in reverse engineering a system's architecture, while a

number of documentation tools can automatically create

project documentation from especially formatted source

code. We examine tools based on increasing levels of affinity

between the source code and its execution. We start with

tools that operate on source code at a lexical level (that is,

they process characters without parsing the program

structure), continue with tools based on code parsing and

compilation, and finish with an overview of tools that depend

on the code execution.

Figure 1. Open Source Tools to Enhance Software

Comprehension

3.3.2.1. Regular Expression

The tools that operate on source code at a lexical level are

powerful and can be used on any programming language or

platform, operate without a need to pre-process or compile

files, handle a wide variety of tasks, execute swiftly, and

handle arbitrary amounts of program text. Using such tools,

you can efficiently search for patterns in a large code file or

across many files. These tools are by their nature imprecise;

however, their use can save time and yield results that might

escape casual manual browsing. The power and flexibility of

many lexical tools come from the use of regular expressions.

You can think of a regular expression as a recipe for

matching character strings. A regular expression is composed

from a sequence of characters. Most characters match only

with themselves, but some characters, called meta-

characters, have special meaning. You create regular

expressions by using a combination of regular characters and

meta-characters to specify a recipe for matching the exact

code items you may be looking for.

Software

Comprehens

ion

Profilers

(GProf)

Program

Slicing
Code

Reading

Version

Control System

GIT

Hooks

Document

Generator

Doxygen Regular

Expression

Editor As a Code

Browser (Ctags)

Code Searching

with GREP

Locating File

Differences

Code Beautifiers

GIT

GIT
Patche

s

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 662

3.3.2.2. The Editor as a Code Browser

Editors like Emacs and vi use regular expression searches in

combination with an index file to efficiently locate various

definitions in source code. Firstly create an index file using

the ctags or idutils indexing tools. The index file, named tag,

contains a sorted set of the definitions found in the source

files. For C language the definitions recognized include

functions, #defines, and, optionally, typedefs, structs, unions,

and enums. Each line of the tags file contains the name of the

entity recognized, the file it was found in, and a regular

expression pattern for locating that entity within the file.

3.3.2.3. Code Searching with Grep

Large projects are typically split into multiple files,

sometimes organized in a directory structure. Searching

through each file with an editor is not always practical;

fortunately, there are tools that can automate this task. The

parent of all tools used for searching through large bodies of

code is grep, which gets its name from the ed/ex editor

command that prints all lines matching a pattern. Grep takes

as an argument a regular expression to look for and a list of

files to search in. The files are typically specified using a

wildcard pattern, for example, *.c, *.h. Many of the

characters used in regular expressions also have a special

meaning for the command-line shell, so it is better to enclose

the regular expression in quotes.

3.3.2.4. Locating File Differences

An easy way to reuse code is to create a copy of the

respective source code and modify it as needed. There are

many problems with this mode of code reuse; one of them is

that two diverging versions of the code base are created.

Another common situation where you will find two different

versions of a source code file is when you are examining the

evolution of a body of code. In both cases you will end up

with two slightly different versions of a source code file. One

way to compare them is to print both on fanfold paper and

lay the listings side by side, looking for differences. A more

efficient way is to use a tool. The diff program will compare

two different files or directories and list lines that must be

changed to bring the two files into agreement. The diff tool

can output the file differences in a number of ways. Some

output formats are terse and are optimized for use by other

programs such as ed, Revision Control System (RCS), or

Concurrent Versions System (CVS). One of the formats, the

context diff, is particularly user-friendly: it displays the

differences between the two files in the context of the lines

that surround them. The -g option of diff specifies this output

format; other tools such as CVS and RCS also support this

option when comparing different source versions. Lines that

are different between the two files are marked with a !, lines

that are added are marked with a + , and deleted lines are

predictably marked with a -.

3.3.2.5. Code Beautifiers/Formatter

Programmers often use tools to format programming

language source code in a particular manner. Proper code

formatting makes it easier to read and understand. Different

programmers often prefer different styles of formatting, such

as the use of code indentation and whitespace or positioning

of brackets. A code formatter converts source code from one

format style to another. This is relatively straightforward

because of the unambiguous syntax of programming

languages. Code beautification involves parsing the source

code into component structures, such as assignment

statements, if blocks, control flows etc. and formatting them

in a manner specified by the user in a configuration file.

Code beautifiers exist as standalone applications and built

into text editors and Integrated Development Environments

(IDE). For example, Notepad++ is widely used for writing

Python programs as it can correctly indent blocks of code

attractively.

3.3.3. Profilers

Program profiling or software profiling is a form of dynamic

program analysis that measures the space or time complexity

of a program, the usage of particular instructions, or the

frequency and duration of function calls. Most commonly,

profiling information serves to aid program optimization.

Profiling is achieved by instrumenting, either the program

source code or its binary executable form using a tool called a

profiler (or code profiler). Profilers may use a number of

different techniques, such as event-based, statistical,

instrumented, and simulation methods.

Application performance is crucial to a software

Engineering. When code executes quickly and efficiently,

then the software is responsive and reliable. However, when

code goes into unnecessary loops, calls extraneous functions,

or trips over itself in some other way, then the code is a bad

code. The software may be sluggish or unresponsive. If left

unchecked, this ultimately may result in serious

consequences. Very few lines of code run at peak

performance when they’re first written. Code must be

analysed, debugged, and reviewed to determine the most

effective way to make it run faster. How can software

developers and quality engineers ensure that their code is

quick, efficient and ultimately seen as valuable? The solution

to this is in using a profiling tool to answer questions like

how many times each method in your code is called and how

long does each of those methods takes. It tracks things like

memory allocations and garbage collection. Some profilers

also track key methods in the code so you can understand

how often SQL statements are called on web service calls.

Some profilers can track web requests and the train those

transactions to understand the performance of dependencies

and transactions within your code. Profilers can track all the

way down to each individual line of code or the CPU

instructions, which is very slow. These tools can quickly

diagnose how the software performs and enable

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 663

programmers to zero in on areas of poor performance. The

result is a streamlined code base that performs well.

Optimizing code is a challenging task. It requires time,

thought, and investigation from developers. Without the

proper tools, programmers have to fall back on slower, less

efficient ways of trying to optimize their applications. Some

developers take to “pre-optimizing” code; they guess where

performance problems will occur and refactor their code in

an attempt to eliminate problems before they appear. This

approach is problematic because a developer will often

incorrectly diagnose the potential bottlenecks. The

programmer may look only at his own code, instead of the

full code base, thus missing integration issues. He may not

have insight into his target users’ expected behaviour, or he

may focus on an area of code that’s infrequently used.

There are three different types of profilers:

- High level: High level profilers track performance of key

methods and typically do transaction timing, such as

tracking how long a web request takes, while also giving

visibility to errors and logs.

- Low Level: Low level code profiling can be very slow and

has a lot of overhead, potentially making the software

slower than it should be. This kind of profiler usually

tracks performance of every single method in your code

and potentially, every single line of code within each

method. These types of profilers are also tracking memory

allocations and garbage collection to help with memory

leaks. They’re very good at finding that hot path, figuring

out every single method that’s being called, and what’s

using the most CPU.

- Hybrid: A hybrid profiler gets some detail from server-

based profiling and desktop based profiling thus giving a

high level overview with low overhead.

Flat and Call-graph profilers are profilers based on output.

Flat profilers compute the average call times, from the calls,

and do not break down the call times based on the callee or

the context. Call-graph profilers show the call times, and

frequencies of the functions, and also the call-chains

involved based on the callee.

3.3.4. Slicers

Slicing has served as the basis of numerous software

comprehension tools. The slice of a program for a particular

variable at a particular line of the program is just that part of

the program responsible for giving a value to the variable at

that spot. Obviously, while debugging you determine that the

value of a variable at a particular line is incorrect, it is easier

to search for the faulty code by looking at the appropriate

slice than by examining the entire program. It is the

computation of the set of programs statements, the program

slice that may affect the values at some point of interest,

referred to as a slicing criterion. Program slicing can be used

in debugging to locate source of errors more easily. Other

applications of slicing include software maintenance,

optimization, program analysis and information flow control.

At first, slicing was only static, i.e., applied on the source

code with no other information than the source code. But

later dynamic slicing was introduced which works on a

specific execution of the program (for a given execution

trace).

- Static slicing: A static program slice S consists of all

statements in program P that may affect the value of

variable v at some point p. The slice is defined for a

slicing criterion C = (x, V), where x is a statement in

program P and V is a subset of variables in P. A static

slice includes all the statements that affect variable v for a

set of all possible inputs at the point of interest (i.e., at the

statement x). Static slices are computed by finding

consecutive sets of indirectly relevant statements,

according to data and control dependencies.

- Dynamic Slicing: Makes use of information about a

particular execution of a program. A dynamic slice

contains all statements that actually affect the value of a

variable at a program point for a particular execution of

the program rather than all statements that may have

affected the value of a variable at a program point for any

arbitrary execution of the program.

3.3.5. Version Control System

A tool that manages and tracks different versions of software

or other content is referred to generically as a version control

system (VCS), a source code manager (SCM), or a revision

control system (RCS). These tools aim at developing and

maintaining a repository of content, provide access to

historical editions of each datum, and record all changes in a

log. GIT is a powerful, flexible, and low-overhead version

control tool that makes collaborative development a pleasure.

It was invented by Linus Torvald to support the development

of the Linux Kernel, but it has since proven valuable to a

wide range of projects. A “patch” is a compact representation

of the differences between two files, intended for use with

line-oriented text files. It describes how to turn one file into

another, and is asymmetric: the patch from file1 to file2 is not

the same as the patch for the other direction (it would say to

delete and add opposite lines, as we will see). The patch

format uses context as well as line numbers to locate

differing file regions, so that a patch can often be applied to a

somewhat earlier or later version of the first file than the one

from which it was derived, as long as the applying program

can still locate the context of the change. The terms “patch”

and “diff” are often used interchangeably, although there is a

distinction, at least historically. A diff only need show the

differences between two files, and can be quite minimal in

doing so. A patch is an extension of a diff, augmented with

further information such as context lines and filenames,

which allow it to be applied more widely.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 664

A simple patch can be generated by git diff:

$ diff --git direct1/file1.c direct2/file2.c

This is the Git diff header; diff --git isn’t a literal command,

but rather just suggests the notion of a Git-specific diff in

Linux command style. direct1/file1.c and direct2/file2.c are

the files being compared, with added leading directory names

direct1 and direct2 to distinguish them in case they are the

same (this patch shows the changes from one version to

another of the same file). To generate this patch, change the

file file1.c and run git diff, which shows the unstaged

changes between the working tree and the index.

In computer jargon, a “hook” is a general means of inserting

custom actions at a certain point in a program’s behaviour,

without having to modify the source code of the program

itself. For example, the text editor Emacs has many “hooks”

that allow you to supply your own code to be run whenever

Emacs opens a file, saves a buffer, begins writing an email

message, etc. Similarly, Git provides hooks that let you add

your own actions to be run at key points. Each repository has

its own set of hooks, implemented as programs in .git/hooks;

a hook is run if the corresponding program file exists and is

executable. Hooks are often shell scripts, but they can be any

executable file. Git Init automatically copies a number of

sample hooks into the new repository it creates, which you

can use as a starting point. These are named

hookname.sample; rename one removing the .sample

extension to enable it. The sample hooks themselves are part

of your Git installation, typically under /usr/share/git-

core/templates/hooks.

The templates directory also contains a few other things

copied into new repositories, such as the default

.git/info/exclude file. For example, there is a hook named

commit-msg, which is run by git commit after the user edits

his commit message but before actually making the commit.

The hook gets the commit message in a file as an argument,

and can edit the file to alter the message. If the hook exits

with a nonzero status, Git cancels the commit, which can be

used to suggest a certain style of commit message. It’s only a

suggestion though, because the user can avoid hook with git

commit --no-verify. You’d need a different kind of hook on

the receiving end of a push to enforce style on a shared

repository.

4. How to Use Open Source Tools on Large Code Using

Shell Scripts?

Various Linux commands to install and use the

aforementioned tools are given below:

4.1. To install Doxygen on Ubuntu use the following

command:

$ sudo apt-get install doxygen

$ sudo apt-get install graphviz

To generate documentation of source code, first generate a

project specific doxygen configuration file using the

following command:

$ doxygen –g myproject.conf

You can edit the following options in the configuration file

as shown in figure 2.

Now run doxygen with the configuration file:

$ doxygen myproject.conf

Documentations are generated in both HTML and Latex

formats, and stored in ./html and ./latex directories

respectively.

Document all entities in the project.

EXTRACT ALL = YES

Document all static members of a file.

EXTRACT STATIC = YES

#Specify the root directory that contains the project’s source

file.

INPUT =/home/pucsd/source

#Search sub-directories for all source files.

RECURSIVE = YES

#Include the body of functions and classes the

documentation.

INLINE_SOURCES = YES

#Generate visualization graph by using dot program (part of

graphviz package).

HAVE_DOT = YES

Figure 2. Generated Configuration File

4.2. Using Profilers

The ‘gprof’ command produces an execution profile of C and

many other programming languages. The effect of called

routines is incorporated into the profile of each caller. The

gprof command is useful in identifying how a program

consumes processor resource. To find out which functions in

the program are using the processor, you can profile the

program with the gprof command. Gprof can be installed

using the following command:

$ sudo apt-get install binutils

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 665

Compile the ‘.c’ code with the -pg option as follows:

$ gcc -Wall -std=c99 -pg sorting.c -o sorting

Once compiled, run the program named ‘sorting’:

$./sorting

After successful execution, the program will produce a file

named "gmon.out" that contains the profiling information,

but in a raw form, which means that you cannot open the file

and directly read the information. To generate a human

readable file, run the following command:

$ gprof sorting gmon.out > prof_output

This command writes all the profiling information in human

readable format to "prof_output" file. You can give a

different name for the output file.

4.2.1. Flat profile and Call graph

The file contains profiling data, divided into two parts: Flat

profile and Call graph. While the former contains details like

function call counts, total execution time spent in a function,

and more, the latter describes the call tree of the program,

providing details about the parent and child functions of a

particular function.

4.3. Program Slicing

Program slicing is a technique for aiding, debugging and

program comprehension by reducing complexity. The essence

of program slicing is to remove statements from a program

that do not affect the values of variables at a point of interest.

It is of great use in software comprehension, for example

when software has to be maintained or evolved. It can be used

to generate many automated software metrics such as a

measure of cohesion in a program fragment. It can also aid

testing, model checking and compiler tuning amongst others.

In order to carryout program slicing we have to define slicing

such that a slice is only equivalent to the original program

when the original program terminates. Furthermore, a strictly

minimal slice cannot be found and only an approximation can

be computed, however, this is usually good enough and

program slicing is still a useful technique.

Most forms of program slicing are syntax preserving. That is

they leave the syntax of the original program largely

untouched and simply remove statements to create a program

slice. The exception to this rule is that if removing statements

may cause a compilation error then statements may be

altered, this is still considered syntax preserving. If this

constraint is relaxed and the slicer is allowed to make

syntactic changes as long as the relevant semantics are

preserved then this is known as amorphous slicing. Consider

the following program fragment to be sliced:

scanf("%d",&n);

s = 0;

p = 0;

while (n > 0)

{

s = s + n;

p = p * n;

n = n - 1;

}

printf ("%d%d", p, s);

}

/* the slice point is the end of the program */

Figure 3. A Typical ‘C’ Program

Different slices generated for the above program (Figure 3) is

as follows:

Static Slice Dynamic Slice Condition Slice

scanf ("%d", &n);

p = 0;

while (n > 0)

{

p = p * n;

n = n - 1;

}

p = 0;

scanf ("%d", &x);

scanf ("%d", &y);

if(x > y)

z = 1;

else

z = 2;

printf ("%d", z);

Figure 4. Slices for the Program in Figure 3

4.4. Code Reading

4.4.1. Regular Expression or Patterns

Most of the program editors provide a command for

searching text string using regular expression or pattern. A

regular expression allows the declarative specification of

complex strings.

 Regular expressions consist of:

o letters (that represent themselves) and

o special symbols

o backslash escapes special symbols

The following table contains the specific patterns

Table 1. Examples of Regular Expressions

Pattern Description

. Any character

[pqr] Any of the characters p, q or r

a* Zero or more occurrences of a

^ Beginning of a line

$ End of a line

\< Beginning of a word

\> End of a word

\d Digit

\D Non-Digit

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 666

Expr? Expression 0 or one times

Expr* Expression 0 or more times

Expr{n,m} The expression at least n but no more than m

times

Here is some sample examples of patterns:

1. Pattern that works as a trim function on strings:

/^\s+ | \s+$/g

where “^\s+” – means replace any first spaces of line,

“^” - begin of line, “\s” - space character, “+” – matches

one or more times, “|” – means or, “\s+$” – means

replace any last spaces of line, “$”- end of line, “\g”-

replace all matches. First and last "/" shows begin and

end of the pattern, respectively

2. Pattern to find if a string has any substring matching a

floating point number:

[- +]?([0-9]+ \ . ?[0-9]* | \ .[0-9]+) ([eE] [- +] ? [0-9] +)?

3. Pattern to check whether a given value is a IP value:

\b \d{1, 3} \ . \d{1,3}\. \d{1, 3}\. \d{1, 3} \b

4. Pattern to match all date formats:

(\ d +) [- . \ /](\ d +) [- . / \] (\ d +)

4.4.2. Editor as a Code Browser (id-utils or Ctags)

Editor as a code browser provides the tag facility and use of

regular expressions. The id-utils indexing tool creates a

database of identifiers and their occurrences within a set of

files. Separate command-line tools can then be used to query

the database for files containing an identifier, edit a set of

files that satisfy a query, list of tokens within a file.

Compared to ctags, id-utils handle a wider range of

identifiers including literals and names of include files. The

exuberant ctags indexing tool enhance ctags by providing

support for 23 different languages.

$ sudo apt-get update

$ sudo apt-get install id-utils

$ sudo apt-get install exuberant-ctags

You can ensure whether id-utils package is installed using

the command given below:

$ sudo dpkg-query -l | grep id-utils *

Ctags allows to quickly jump to function call even if the

function definition source code are from other directories. In

order to use ctags, first run the command at destination

directory where the source codes are located.

$ ctags –R *

-R is to recursively go across all the directories, and a ‘tags’

file will be created. Pressing ‘ctrl]’ allows you to jump from

function call to function definition on the keyword. Let say

when you discover a function call for which you want to see

the definition, simply point the cursor to that function and

press ‘ctrl]’ and it will brings you there. Use ‘ctrl I’ and ‘ctrl

o’ to travel to forward and backward of the check points.

4.4.3. Code Searching with Grep

Grep comes already installed on every Linux system, so there

is no need for manual installation. Simple wildcard search:

 Search for definitions

 Using a word's root

 Locating files: grep on the output of ls

 File list: grep -l

 Use the result of a file list vi `grep -l ...`

 Stream edit the grep result to create scripts

 Postprocess with grep (-v) to eliminate noise

(malloc/xmalloc)

 Use sort -u to eliminate duplicates

 Use fgrep to search for a fixed list of strings

 Use find and xargs to obtain filename lists

 Simple wildcard search

Following is a summary of the grep command options:

 -i does case-insensitive character matching

 -r reads all files under each directory recursively

 -n shows the line number of each match

 -c shows the match count

 -v inverts the matching by selecting the non-matching

lines

 -o prints only the matched parts of a matching line, with

each part on a separate output line

 -w only matches on whole words

The following usage of grep command will search for the

string ‘Sample String’ in two files viz. a.txt and b.txt.

$ grep ‘Sample String’ a.txt b.txt

The general syntax to use grep command with other

commands is as follows:

$command|grep'search-pattern'

$ command1|command2|grep'search-pattern'

In this example, run ls command and search for the

string/pattern called trial.pdf:

ls | grep trial.pdf

ls-l | grep trial.pdf

ls-l | *.mov|grep 'happy'

ls-l | *.mov|grep -i 'happy'

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 667

4.4.4. Locating File Differences

 Uses:

o Differences between versions

o Examining code modifications

o Verifying test results

 The diff program

 Obtaining a context diff (-c)

 Ignoring blanks (-w)

The command ‘diff’ analyses two files and prints the lines

that are different. In the real sense it outputs a set of

instructions for how to change one file to make it identical to

the second file. Consider two files, file1.txt and file2.txt.

Figure 5. Output of ‘diff’ Command

The diff output (Figure 5) means that it is describing these

differences in a prescriptive context: it's telling how to

change the first file to make it match the second file.

The first line of the diff output will contain:

 line numbers corresponding to the first file,

 a letter (a for add, c for change, or d for delete), and

 line numbers corresponding to the second file.

In the output above, "2,4c2,4" means: "Lines 2 through 4 in

the first file need to be changed to match lines 2 through 4 in

the second file." It then tells us what those lines are in each

file:

 Lines preceded by a < are lines from the first file;

 Lines preceded by > are lines from the second file.

The three dashes ("---") merely separate the lines of file 1

and file 2.

4.4.5. Code Beautifiers

 Fix code that is written inconsistently without

following any formatting standards.

 Adopt orphaned code for maintenance.

 Create a temporary version of the code to help you

decipher it.

 Integrate code under the common roof of a larger

project.

For printing use a pretty-printer, like listings (LaTeX), vgrind

(troff).

4.4.6. Version Control System (GIT)

GIT Patch and Git-Hooks can be used as VCS thus helping

in tracking project across times. Version control operations

like a commit or a check-in adds a change into the repository,

an update or check-out retrieves a version from the

repository etc. The central repository keeps the historical

data and the versions are tracked with version numbers. A

patch is a small file that indicates what was changed in a

repository. By using patch, you will get differences between

one or more files. And later, you can apply the differences

(patch) to get the changes on new files. There are many uses

for a patch in Git.

Figure 6. How to Create a Patch

After patching:

$ patch < changes.patch

patching file file1.txt

$ cat file1.txt

This is third line.

This is second line.

Git hooks are scripts that Git executes before or after events

such as: commit, push, and receive. Git hooks are a built-in

feature that run locally. Some example hook scripts include:

 pre-commit: Check the commit message for spelling errors.

 pre-receive: Enforce project coding standards.

 post-commit: Email/SMS team members of a new commit.

 post-receive: Push the code to production.

Git-hooks are simple scripts that run before or after certain

actions. There are two types of hooks:

 Client-side – These run on the developer’s system

 Server-side – These run on the server hosting the Git

repository

Every Git repository has a .git/hooks folder with a script for

each hook you can bind to. The scripts are editable as

necessary, and Git will execute them when those events

occur. Some of the Git-hooks you can attach scripts to are:

file1.txt file2.txt
$ diff file1.txt file2.txt

output will be: 2,4c2,4

Saturn

Jupiter

Mercury

Uranus

Saturn

Venus

Mars

Neptune

< Jupiter

< Mercury

< Uranus

>Venus

> Mars

> Neptune

$ cat file1.txt
$ cat

file2.txt

$ diff -u file1.txt file2.txt >

changes.patch

$ cat changes.patch

This is first line.

This is second
line.

This is third

line.
This is

second line.

 --- file1.txt 2018-04-15
11:09:38.651010370 -0500

+++ file2.txt 2018-04-15

11:07:13.171010362 -0500
@@ -1,2 +1,2 @@

- This is first line.

+This is third line.
 This is second line.

 International Journal of Computer Sciences and Engineering Vol.7(3), Mar 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 668

applypatch-msg, pre-applypatch, post-applypatch, pre-

commit, prepare-commit-msg, commit-ms, post-commit, pre-

rebase, post-checkout. post-merge, pre-receive, update, post-

receive, post-update, pre-auto-gc, post-rewrite and pre-push.

You can make the script executable by overwriting one of the

scripts in .git/hooks.

IV. CONCLUSIONS

Software Comprehension is the process of acquiring

knowledge and understanding an existing computer program

in order to be able to modify it. Increased knowledge enables

activities such as bug correction, enhancement, reuse, and

documentation. While efforts are underway to automate the

understanding process, such significant amounts of

knowledge and analytical power are required that today

software comprehension is largely a manual task. The

developer/programmer needs a well-defined and an efficient

strategy for comprehending the program in order to identify

the desired code. This paper presents a generalized approach

for programmers, particularly “new buddies”, to develop an

understanding of how applications work so that can modify

or add code at the right place. It also shows how to translate

this comprehension into effective coding. The programmers

should come out with an efficient understanding of correctly

framing the software problem and gather resources needed to

obtain an output. Thus writing code has become very easy as

compared to making changes in the existing code written by

somebody else, which is indeed a challenging job.

REFERENCES

[1] G. M. Weinberg, Editor, “The Psychology of Computer

Programming”, vol. 932633420, 1971. New York: Van Nostrand

Reinhold.

[2] M. A. Storey, “Theories, Tools and Research Methods in Program

Comprehension: Past, Present and Future”, Software Quality

Journal, vol.14 (3), pp. 187-208, 2006.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster,”Program

Understanding and the Concept Assignment

Problem”, Communications of the ACM, vol. 37(5), pp. 72-82,

1994.

[4] R. P. Gabriel, Editor, “Patterns of Software”, vol. 62, 1996,

Newyork, Oxford University Press.

[5] S. Rugaber, “Program Comprehension for Reverse Engineering”,

In AAAI Workshop on AI and Automated Program

Understanding, San Jose, California, pp. 106-110, 1992.

[6] D. L. Parnas, “On the Criteria to be used in Decomposing Systems

into Modules”, Coomunications of the ACM, vol. 15(12), pp.

1053-1058, 1972.

[7] V. Rajlich and N. Wilde, “The Role of Concepts in Program

Comprehension”, In Program Comprehension, Proceedings, 10
th

International Workshop on IEEE, pp. 271-278, 2002.

[8] J. Siegmund, C. Kastner, S. Apel, A. Brechmann and G. Saake,”

Experience from Measuring Program Comprehension-Toward a

General Framework, 2013.

[9] B. Di Martino, C. W. Kebler, “Two Program Comprehension

Tools for Automatic Parallelization,” IEEE Concurrency, vol.

8(1), pp. 37-47, 2000.

[10] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan ans S. Li,”

Measuring Program Comprehension: A Large-Scale Field Study

with Professionals”, IEEE Transactions on Software Engineering,

2017.

[11] R. Schauer and R. K. Keller, “ Integrative Levels of Program

Comprehension”, In Reverse Engineering, WCRE'08, 15
th

Working Conference on IEEE, pp. 145-154, 2008.

[12] N. Saroni, S. A. Aljunid, S. M. Shuhidan, and A. Shargabi, “An

Empirical Study on Program Comprehension Task Classification

of Novices”, In e-Learning, e-Management and e-Services (IC3e),

2015 IEEE Conference on IEEE, pp. 15-20, 2015.

[13] R. Wettel and M. Lanza, “Program Comprehension through

Software Habitability”, in Program Comprehension, ICPC'07,15
th

IEEE International Conference on IEEE, pp. 231-240, 2007.

[14] N. Sasirekha, a. E. Robert and D. M. Hemlata, “Program Slicing

Techniques and its Applications”, arXiv preprint arXiv: pp. 1108-

1352, 2011.

[15] N. Carvalho, C. da Silva Sousa, J. S. Pinto and A. Tomb, “Formal

Verification of kLIBC with the WP Frama-C Plug-in”, in NASA

Formal Methods, pp. 343-358, 2014.

[16] M. A. Storey, K. Wong and H. A. Muller,” How do Program

Understanding Tools Affect How Programmers Understand

Programs?.”, In Reverse Engineering, Proceedings of the 4
th

Working Conference on IEEE, pp. 12-21, 1997.

[17] Y. Liu, X. Sun, X. Liu and Y. Li, ”Supporting Program

Comprehension with Program Summarization”, In Computer and

Information Science (ICIS), IEEE/ACIS 13
th
 International

Conference on IEEE, pp. 363-368, 2014.

[18] A. Von Mayrhauser and A. M. Vans, “Program Comprehension

During Software Maintenance and Evolution,” Computer, vol.

28(8), pp. 44-55, 1995.

[19] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen and R.

Koschke, “ Systematic Survey of Program Comprehension through

Dynamic Analysis,” IEEE Transactions on Software

Engineering, vol. 35(5), pp. 684-702, 2009.

[20] E. Soloway, K. Ehrlich, “Empirical Studies of Programming

Knowledge,”IEEE Transactions on Software Engineering, vol. 5,

pp. 595-609, 1984.

[21] F. Détienne,”Expert Programming Knowledge: A Schema-Based

Approach”, Psychology of Programming, pp. 205-222, 1990.

Author’s Profile

Jyoti Yadav is currently working as an Assistant Professor

in Department of Computer Science, Savitribai Phule Pune

University. She has 22 years of teaching experience. She has

been awarded Ph.D. (CS) and M.Phil. (CS) from same

University. She has published research papers in many

National and International journals. She has been actively

working on many major and minor research projects in the

University. The broad perspective of her research areas

include Soft Computing, Fuzzy Logic, Fuzzy Image

Processing, Big Data Analytics, Genetic Algorithms, and

Data Science and Data Mining, Cloud Computing,

Blockchain Technology, Software Defined Networks and

Quantum Computing etc.

https://github.com/git/git/blob/master/templates/hooks--applypatch-msg.sample
https://github.com/git/git/blob/master/templates/hooks--pre-applypatch.sample
https://github.com/git/git/blob/master/Documentation/githooks.txt#L74
https://github.com/git/git/blob/master/templates/hooks--pre-commit.sample
https://github.com/git/git/blob/master/templates/hooks--pre-commit.sample
https://github.com/git/git/blob/master/templates/hooks--prepare-commit-msg.sample
https://github.com/git/git/blob/master/templates/hooks--commit-msg.sample
https://github.com/git/git/blob/master/Documentation/githooks.txt#L142
https://github.com/git/git/blob/master/templates/hooks--pre-rebase.sample
https://github.com/git/git/blob/master/templates/hooks--pre-rebase.sample
https://github.com/git/git/blob/master/Documentation/githooks.txt#L160
https://github.com/git/git/blob/master/Documentation/githooks.txt#L178
https://github.com/git/git/blob/master/Documentation/githooks.txt#L221
https://github.com/git/git/blob/master/templates/hooks--update.sample
https://github.com/git/git/blob/master/Documentation/githooks.txt#L295
https://github.com/git/git/blob/master/Documentation/githooks.txt#L295
https://github.com/git/git/blob/master/templates/hooks--post-update.sample
https://github.com/git/git/blob/master/Documentation/githooks.txt#L387
https://github.com/git/git/blob/master/Documentation/githooks.txt#L394
https://github.com/git/git/blob/master/Documentation/githooks.txt#L192

