

 © 2019, IJCSE All Rights Reserved 665

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

 S-REST: A design of Secured Protocol for Implementation of RESTful

Webservices

Chatti Subbalakshmi

1*
, Rishi Sayal

2
, H. S. Saini

3

1, 2, 3

Computer Science & Engineering, Guru Nanak Institutions Technical Campus, Ibrahimpatnam, R. R. Dist., Telangana

*Corresponding Author: subbalakshmichatti@gmail.com , Tel.: +91-9032312260

Available online at: www.ijcseonline.org

Accepted: 25/Jan/2019, Published: 31/Jan/2019

Abstract— Representational State Transfer (REST) is an architectural style for developing web services and its key constraints

are Use of Uniform Interface (UI), client-server based, stateless operations, and Resource caching. It is popular due to its

simplicity and builds on the existing systems. Hence, many cloud providers such as Amazon, Google are moving their APIs

from Simple Object Access Protocol (SOAP) to REST. Unlike SOAP, RESTful service doesn’t provide standard for security

while accessing web services. Hence, we considered the security issues in execution of RESTful web services and proposed a

design of a secured model (S-Rest) over RESTful web services with 3-level security services at communication, Application

and Management. The proposed architecture enhances the performance of RESTful web application.

Keywords— Webservices; RESTful; Security issues;

I. INTRODUCTION

Web Services are the services that are made available from a

business's Web server for Web users or other Web-connected

programs. Web services range from major services as storage

management and Customer Relationship Management

(CRM) down to much more limited services such as the

furnishing of a stock quote and the checking of bids for an

auction item. There are two types of Web Services: SOAP

web services and RESTful web services [1].

SOAP (Simple Object Access Protocol) is a messaging

protocol that allows programs that run on operating systems

to communicate using Hypertext Transfer Protocol (HTTP)

and Extensible Markup Language (XML). The merits of

SOAP are simplified communications through proxies and

firewalls; it has the ability to leverage different transport

protocols including HTTP and SMTP, as well as others [2].

Its demerit is typically much slower than other types of

middleware standards, including CORBA. There tends to be

firewall latency due to the fact that the firewall is analyzing

the HTTP transport.

REST (REpresentational State Transfer) is an architectural

style for developing web services. REST builds upon

existing systems and features of the internet's HTTP in order

to achieve its objectives as opposed to creating new

standards, frameworks and technologies [3]. The advantages

of REST are REST-based interactions happen using

constructs that are familiar to anyone who is accustomed to

using the internet's Hypertext Transfer Protocol (HTTP).

Details such as encryption and data transport integrity are

solved not by adding new frameworks or technologies, but

instead by relying on well-known Secure Sockets Layer

(SSL) encryption and Transport Layer Security (TLS).

RESTful web services can be written using any language. So,

developers tasked with implementing such services can

choose technologies that work best for their situation [4]. The

disadvantages of REST are that since HTTP doesn't have any

mechanism to send push notifications from the server to the

client, it is difficult to implement any type of services where

the server updates the client without the use of client-side

polling of the server or some other type of web hook.

RESTful API is an application program interface that uses

HTTP requests to GET, PUT, POST and DELETES data [3].

A RESTful API also referred to as a RESTful web service is

based on representational state transfer (REST) technology,

an architectural style and approach to communications often

used in web services development. REST leverages less

bandwidth, making it more suitable for internet usage [4].

RESTful APIs are used by such sites as Amazon, Google,

LinkedIn and Twitter. The presumption is that all calls are

stateless; nothing can be retained by the RESTful service

between executions. REST is more useful in cloud

applications.

In proposed S-REST model, we consider the security

principles which can avoid the attacks during the execution

of RESTful web services through a 3-level security model. A

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 666

3-Level Security services is being modeled for better

authentication and authorization access of the RESTful web

services. They are Communication level, Application

Gateway level and Management level.

Rest of the paper is organized as follows, Section II contain

the related work, Section III describes on security issues of

Restfull web services, Section IV contain security principal

of Restfull web services, Section V shows the architecture

and functionality of each proposed model, Section VI contain

applicability of proposed model and concludes research work

with future directions.

II. RELATED WORK

By comparing RESTful services and WS* services in [5],

discuss some of the problems facing the existing RESTful

services applied to large enterprise systems. They are:

Identification of resources, Manipulation of resources

through representations, Self-descriptive messages and

Hypermedia as the engine of application state (abbreviated

HATEOAS).

These principles describe the architecture of systems and

interactions that make up the Web. The building blocks of

the Web are called resources, which can be named as a target

of hypertext. In response to a request for a resource, the

client receives a representation of that resource, which may

have a different format than the resource owned by the

server. Resources are manipulated via messages that have

standard meanings; on the Web, these messages are the

HTTP methods. The fourth principle means that the state of

any client–server interaction is kept in the hypermedia they

exchange. Any state information is passed between the client

and the server in each message, thus keeping them both

stateless. WS* services do not have a single metaphor. Web

Services Architecture document fromW3C describes four

architectural models of WS*. One of the models is the

Resource Oriented Model (implies REST) considered are

limited to various standards: SOAP, WSDL, and others. New

capabilities are added to WS* in the form of new standards.

The authors in [6] proposed RESTful and WS* services are

compared on three levels: (1) architectural principles, (2)

conceptual decisions, and (3) technology decisions. On the

level of architectural principles, analyze three principles

(protocol layering, dealing with heterogeneity, and loose

coupling) and it’s not possible to make a decision at this

level. At the level of conceptual decisions, they compare

nine different decisions and find that RESTful services

require the designer to make eight of them, vs. only five for

WS*. WS* have many more alternatives than RESTful

services. Finally, in the technology comparison, they identify

ten technologies that are relevant to both styles. In this

comparison, WS* once again offer many more alternatives

than their RESTful counterparts. Based on these results, the

authors recommend using REST for ad hoc integration and

using WS* for enterprise-level application integration where

transactions, reliability, and message-level security are

critical. This study illustrates two key difficulties. First, it’s

difficult to select the most relevant principles to compare.

Second, once the principles are selected, it’s difficult to

identify choices that are shared by the competing ideas.

The principles that are relevant to all systems available on

the Web are discussed in [7]. They identify four system

properties of RESTful services: (1) uniform interface, (2)

addressability, (3) statelessness, and (4) connectedness. In

RESTful Web services, these properties are embodied in

resources, URIs, representations, and the links between them.

Many WS-*services are stateless. Having a uniform interface

shared by all services is the only property not supported by

WS*. WS* services exhibit three of these four properties.

Both styles of Web services possess certain characteristics

that guide their design and development, although they are

defined in ways that make it difficult to compare them side-

by-side.

Proposed data security architecture in [8], includes

encryption and verification services both at file and block

storage level to satisfy the data protection needs of different

cloud service models, especially computing service (IaaS)

model. Our solution facilitates cloud consumers to store their

sensitive information and application data objects in

corresponding storage devices with complete data privacy

and security. It also leverages both CSP and cloud vendors

for achieving transparency in security processes of cloud.

Proposed approach in [9], the WS-Security User name Token

and secondary password are added into the HTTP header. By

this way, the approach allows service providers to define

their own authentication which makes up for the

disadvantages of the current security aspect of REST-style

Web services, especially when Basic HTTP Authentication

and HTTP Digest Authentication are not applicable.

The authors of [10] proposed approaches an important part of

this requirement by introducing a REST-ful CoAP message

authentication scheme. The overarching goal of this work is,

though, to establish a message-oriented security layer for

CoAP. Here, specific challenges are stemming from the

architectural style REST and the resource-restrictiveness of

IoT networks and devices.

The authors of [11] introduce the REST security protocol to

provide secure service communication, together with its

performance analysis when compared to equivalent WS-

Security configuration.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 667

III. SECURITY APPROACHES

In recent years, Representational State Transfer (REST)

represents 70% of public APIs using light-weight data

interchange format, i.e., JavaScript Object Notation (JSON).

It is software architecture to access web services in much

simpler way than possible with Simple Object Access

Protocol (SOAP) using HTTP. Compared to SOAP, RESTful

services need more security in accessing the web resources.

Security Approach: Security issues and attacks may occur

in the RESTful web services: Client Impersonation, Access

Tokens, Authorization Codes, Resource Owner Password

Credentials, Credentials Guessing Attacks, Phishing Attacks,

Cross-Site Request Forgery and Click jacking.

IV. SECURITY PRINCIPALS OF RESTFULL WEB SERVICES

The security attacks can be avoided using the following

Security principles of RESTful web services:

HTTPS - REST services must only provide HTTPS

endpoints. This protects authentication credentials in transit.

It also allows clients to authenticate the service and

guarantees integrity of the transmitted data.

Access Controls - Non-public REST services must perform

access control at each API endpoint. Web services in

monolithic applications implement this by means of user

authentication, authorization logic and session management.

This has several drawbacks for modern architectures which

compose multiple micro services following the RESTful

style.

JWT (JSON Web Tokens) - There seems to be a

convergence towards using JSON Web Tokens (JWT) as the

format for security tokens. JWTs are JSON data structures

containing a set of claims that can be used for access control

decisions. A cryptographic signature or message

authentication code (MAC) can be used to protect the

integrity of the JWT.

API Keys - Public REST services without access control run

the risk of being framed leading to excessive bills for

bandwidth or compute cycles. API keys can be used to

mitigate this risk. They are also often used by organization to

monetize APIs; instead of blocking high-frequency calls. API

keys can reduce the impact of denial-of-service attacks.

However, when they are issued to third-party clients, they are

relatively easy to compromise.

Input validation – Do not trust input parameters/objects.

Validate input by length/range/format and type. Achieve an

implicit input validation by using strong types like numbers,

Booleans, dates, times or fixed data ranges in API

parameters.

Management end points - If management endpoints must be

accessible via the Internet, make sure that users must use a

strong authentication mechanism. Expose management

endpoints via different HTTP ports or hosts preferably on a

different NIC and restricted subnet.

Error Handing – Respond with generic error messages -

avoid revealing details of the failure unnecessarily. Do not

pass technical details to the client.

Audit Logs – Write audit logs before and after security

related events. Consider logging token validation errors in

order to detect attacks.

Security headers – To make sure the content of a given

resources is interpreted correctly by the browser, the server

should always send the Content-Type header with the correct

Content-Type, and preferably the Content-Type header

should include a char set. The server should also send an X-

Content-Type-Options:nosniff to make sure the browser does

not try to detect a different Content-Type than what is

actually sent.

V. METHODOLOGY

Representational State Transfer (REST) is an architectural

style for developing web services. The four key constraints in

implementing RESTful web services are Use of Uniform

Interface (UI), client-server based, stateless operations, and

Resource caching. REST is popular due to its simplicity and

the fact that it build upon the existing systems and features of

internet’s HTTP. Because the calls are stateless, RESTful is

useful in cloud applications and many cloud providers such

as Amazon, Google are moving their APIs from Simple

Object Access Protocol (SOAP) to REST. When more and

more cloud data is moving through APIs rather than

browsers, developers need consistent and secure methods to

access and manipulate cloud hosted services. SOAP based

APIs have standards like WS-Trust and WS-Security to

define the authentication and authorization. But RESTful

service doesn’t provide standard for security while accessing

web services.

The proposed S-REST model provides security services over

RESTful web services by introducing 3-level security

services.

In this model, we proposed a new concept of dynamic cipher

suite which can be more secure HTTP communication over

Transport Layer Security (TLS). In the process of connection

establishment using 3-way handshake protocol, client and

server agree on one of the cipher suites from browser-

dependent set of cipher suites for their communication. The

cipher suite is selected by the server from the client’s cipher

suites. To avoid attacks like Man-in-the-middle, Client

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 668

impersonation, Credentials guessing attacks, Phishing, Cross-

site request forgery, click jacking, we need to provide

additional security approach. Hence, we introduced dynamic

cipher suite which changes the set of cryptographic

algorithms over a time by server.

It also provides an Application gateway to handle security

issues like Access control, authorization and authentication

on RESTful API.

Apart from these security measures for communication and

accessing of RESTful API, this project also provides the

security services using Machine learning algorithms for

monitoring data security and data classification for user

behaviour.

 In this S-REST proposal, we consider the security principles

which can avoid the attacks during the execution of RESTful

web services through a 3-level security model.

A 3-Level Security services is being modelled for better

authentication and authorization access of the RESTful web

services. They are Communication level, Application

Gateway level and Management level.

1. Communication Security service

 It handles the security principles HTTPS, security

headers, validate content types.

 Provides security through proposed Dynamic cipher

suites over HTTPS.

2. Application Gateway Security service

 It handles the security principles access control, JSON

Web Tokens, API keys, Input validation, Error

handling.

3. Management Security service

 It handles the security principles Management

endpoints, Audit logs using Machine learning.

 Data Monitoring and Classification to identify

business-critical data and analyze access patterns and

user behavior

 Data Security to be proactive with security compliance

and achieve preventive security.

Applicability of proposed method:

 S-REST can be adopted in any RESTful web services.

 Additional security can be provided to Social networks

such as Face book, Twitter, LinkedIn, Google

 Security for personal information is provided in

Financial sectors such as Internet banking, credit card

payments, E-commerce item purchases

 Benefits for the users will be protected by securing the

data in Government servers. Or Public Online Services.

Figure 1: A three module S-REST architecture

VI. CONCLUSION AND FUTURE SCOPE

 The security attacks are frequently occurring in the

networks for misuse of the information and applications

through web services. Unlike the SOAP, a RESTful web

service does not provide the standard for security. Hence,

developer has to adopt security principals to achieve the

security on different levels. In this paper, proposed the

security principles for RESTful web services in a 3-level

security model. It provides more secured communication

using proposed dynamic cipher suites. In second level, it

provides a secured way to access RESTful web services

through Application API Gateway. In top level, it

provides the security services that use machine learning to

automatically discover, classify and protective sensitive

data.

The proposed S-REST will be implemented on TLS1.2

using Dynamic cipher suites. Further, it can be enhanced

with the next version of TLS, i.e., TLS1.3. And also more

security principles can be added in the design of

Application gateway. Management security service

module can be enhancing by adapting upcoming advanced

machine learning algorithms.

REFERENCES

[1]. Meiko Jensen, Nils Gruschka, Ralph Herkenhöner, “A survey of

attacks on web services”, Computer Science Research and

Development, Springer, November 2009.

[2]. Hirsch, Frederick; Kemp, John; Ilkka, Jani. “Mobile Web Services:

Architecture and Implementation”, John Wiley & Sons, 2007.

[3]. Richardson, Leonard; Amundsen, Mike, “ RESTful Web APIs”,

O'Reilly Media, retrieved 15 September 2015.

https://books.google.com/books?id=v5f0ORBgd5IC
https://books.google.com/books?id=v5f0ORBgd5IC
https://www.amazon.com/RESTful-Web-APIs-Leonard-Richardson/dp/1449358063/ref=sr_1_1?ie=UTF8&qid=1442372039&sr=8-1&keywords=restful+web+apis

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 669

[4]. "Web Services Architecture". World Wide Web Consortium. 11

February 2004. 3.1.3 Relationship to the World Wide Web and

REST Architectures. Retrieved 29 September 2016.

[5]. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures”, Doctoral dissertation. Technical report,

University of California, Irvine, 2000.

[6]. Pautasso, O. Zimmermann, and F. Leymann, “RESTful Web

Services vs. “Big” Web Services: Making the Right Architectural

Decision”, In WWW ’08: Proceeding of the 17th international

conference on World Wide Web, pages 805–814, New York, NY,

USA, 2008. ACM

[7]. Richardson and S. Ruby, “RESTful Web Services”, O’Reilly, Oct.

2007

[8]. Dharmendra S. Raghuwanshi, M.R.Rajagopalan, “ MS2: Practical

data privacy and security framework for data at rest in cloud”,

Computer Applications and Information Systems (WCCAIS),

2014 World Congress on 17-19 Jan. 2014.

[9]. Dunglu Peng, Chen Li, Huan Huo, “An extended UsernameToken-

based approach for REST-style Web Service Security

Authentication”, Computer Science and Information Technology,

2009. ICCSIT 2009. 2nd IEEE International Conference on 8-11

Aug. 2009.

[10]. Hoai Viet Nguyen, Luigi Lo lacono, “REST-ful CoAP Message

Authentication, Secure Internet of Things (SIoT)”, 2015

International Workshop on 21-25 Sept. 2015.

[11]. Gabriel Serme, Anderson Santana de Oliveira, Julien

Massiera, Yves Roudier, “Enabling Message Security for RESTful

Services”, Web Services (ICWS), 2012 IEEE 19th International

Conference on 24-29 June 2012

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Julien%20Massiera.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Julien%20Massiera.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yves%20Roudier.QT.&newsearch=true

