

 © 2019, IJCSE All Rights Reserved 63

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-7, July 2019 E-ISSN: 2347-2693

Seven Fundamental Principles in the Effectuation of Recursion

Rishi Saxena

Department of Computer Science, Sophia Girls‟ College, Ajmer (Autonomous), India

Corresponding Author: rishi.522.in@gmail.com

DOI: https://doi.org/10.26438/ijcse/v7i7.6367 | Available online at: www.ijcseonline.org

Accepted: 13/Jul/2019, Published: 31/Jul/2019

Abstract: Recursion is a programming methodology used to write efficient computer programs. A recursion based solution to a

given programming problem can be translated to an iteration based solution or by using some other programming constructs

which do not accord with the methodology of recursion. Computer programmers and software engineers usually face this kind

of confusion that which methodology to implement in a particular case or to some specific problem class as there are no candid

guidelines regarding the implementation of recursive solution, leaving the developers in a state of taking decisions upon their

choices and preferences. This paper explores the issue of recursion in various aspects of developing a computer program and

discovers the seven fundamental principles behind the use and implementation of recursion in generating a solution for a

problem of specific nature and class. These seven principles can be referred as pillars of foundation on which recursion is

employed by many programmers as a tool to generate an effective solution which adheres to the quality standards of software

engineering.

Keywords: Recursion, Principles, Programming, Functions, Methods.

I. INTRODUCTION

The classification of any programming language, on the

basis of distinct features it possesses, is referred as

Programming paradigm. Recursion comes under the type of

programming paradigm called as “Structured

Programming”, where the main objectives are (a) To

improve the clarity of the source code, (b) Quality of the

produced computer program and (c) Time required to

develop a solution for the given problem. These objectives

are achieved by exploring the functionality of branching,

looping, blocks and methods.

Divide & Conquer is basically a design paradigm for

algorithms. It operates by decomposing the main problem

into sub problem of the same type recursively until the

problem becomes so small that it can be solved directly

without the requirement of further break down. And then all

the solutions to these smaller problems are integrated to

produce the solution for the main problem.

The paper is organized as follows, Section I introduces

various aspects of the paper – Programming paradigm,

Structured programming, Section II defines the concept of

Recursion in real world as well as in the field of Computer

Science, Section III gives the first principle in implementing

recursion by addressing the logical deduction of the solution,

Section IV gives the second principle in implementing

recursion by taking into account the lines of code required to

generate the solution, Section V gives the third principle in

implementing recursion by considering operations

performed over Tree data structure, Section VI gives the

fourth principle in implementing recursion by following the

control flow of the program in dynamic environment,

Section VII gives the fifth principle in implementing

recursion by observing the simulated behavior, Section VIII

gives the sixth principle in implementing recursion by

considering the aspects of process communication and data

sharing, Section IX gives the seventh principle in

implementing recursion by taking into account the issue of

stack overflow. Section X concludes the research study and

specifies the future scope of the study.

II. RECURSION [1]

When something is defined in its own term or type of its

term recursion happens. For example to develop an object

„A‟ if you require an amount of object „A‟ then recursion

takes place. It is basically a process when some procedure

passes through one of its own steps that involve arousal of

the same procedure. Such a procedure is referred as

“recursive” as it is implementing the methodology of

recursion to produce the solution.

Mathematicians define recursion as an expression containing

terms where generation of every term is done by repeating

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 64

some mathematical operation. Consider the mathematical

sequence given by the relation a(n) = 2 * a(n-1) + 1, with

a(0) = 2.

a(1) = 2 * a(0) + 2 = 6

a(2) = 2 * a(1) + 2 = 14

a(3) = 2 * a(2) + 2 = 30

now if query comes that what is a(10)?

Then to find the answer you must know a(9), and to find the

answer of a(9) you must know a(8), and so on until you

reach a(0).

In the field of computer science recursion is defined as

creating a function call to same function within the function.

returnType recursiveFunction (Parameter(s)){

 if baseCase then

 return someValue

 else

 return recursiveFunction(argument(s))

}

Any computerized recursion is based on two properties:

1. Inclusion of a base case that is the state when no further

recursive calls are made and an answer is produced and

returned.

2. Defining a protocol which directs all other recursive

scenarios towards the base case.

It is a methodology in which some bigger problem is solved

by decomposing it into smaller problems which are basically

instances of the bigger problem only and producing solution

to each smaller problem.

Recursion types:

1. Single recursion – when only one self call is created.

2. Multiple recursion – when multiple self calls are created.

3. Direct recursion – when self call is placed inside the same

method definition.

4. Indirect recursion – when a call is created in some other

method which is called by this method. For example A->B,

B->C, C->D, D->A

5. Anonymous recursion – when a call is made by context

and not by method name.

6. Structured recursion – when data for recursive call is

produced by decomposing the arguments.

7. Generative recursion - when data for recursive call is

produced by creating new data from the arguments.

III. PRINCIPLE #1 OF ORGANIC SOLUTION

A program can be written in many ways to obtain the

solution. Good programming demands to achieve the

solution by maintaining its logical deduction steps to reflect

in the algorithm implementation.

For example to print a natural number series from 1 to 100, a

programmer can opt for by using the print statement for 100

times, and a programmer can opt for by using a loop

construct, in either implementation the output to the end user

will not change but the logic lies in the latter implementation

as the natural solution of the problem is repetitive in nature.

For example Fibonacci series [2], which is a sequence of

numbers, begins with two seed values 0 and 1, and then any

following value is the addition of the two previously

established values.

The formal mathematical definition is F0=0, F1=1, and FN =

FN-1 + FN-2, for all N > 1

If we write in terms of a series then first two terms a0 = 0

and a1 = 1 are the seed values, the following terms are a2 =

1, a3 = 2, a4 = 3, a5 = 5, a6 = 8, and so on.

Query: In Fibonacci series find the value of a5?

Iterative Solution: a0 and a1 are given, so begin calculation

from a2 by adding the values of a0 and a1, then calculate the

value of a3 by adding the values of a2 and a1, then calculate

the value of a4 by adding the values of a3 and a2, and then

calculate and return as answer the value of a5 by adding the

values of a4 and a3.

Recursive Solution: Return as answer the addition of a4 and

a3.

The answer to the question is given as now the question

bifurcates into two new questions that is to find the value of

a4 and a3. And again the same reply that the value of a4 is

the addition of a3 and a2, and the value of a3 is the addition

of a2 and a1, and it goes on until seed values are reached.

Every time it is a one line solution and in complete

accordance with the mathematical definition. Therefore for

certain problems writing recursive implementation is the

natural way of logical deductions as opposed to the optimal

solution which may give better time complexity but lacks in

the understanding of solving a problem which is

fundamental to analogical learning.

IV. PRINCIPLE #2 OF SLOC DIMINUTION

Acronym SLOC [3] stands for Source Lines of Code, it is

also referred as Lines of code, is basically a standard of

measure that quantifies the physical magnitude of a

computer program by counting the source code‟ text lines.

It is generally used to (a) auspicate required programming

effort amount in order to develop a computer program, (b)

Programming productivity estimation and (c) Programming

maintainability estimation once the program has become

operational. A computer program with lesser SLOC requires

(a) less effort to develop thus resulting in an easier and

simpler solution, (b) less time to produce the solution and (c)

easier to maintain.

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 65

Producing a solution based on recursion results in much less

source lines of codes as compared to any optimal solution.

For example, to develop a solution for the classical problem

of “Tower of Hanoi”, the non-recursive iterative solution

and recursive solution are developed. Following are the

results for testing against SLOC:

Iterative Solution:

Symbol Count Definition

Source Files 1 Source Files

Directories 1 Directories

LOC 155 Lines of Code

BLOC 23 Blank Lines of Code

SLOC-P 108 Physical Executable Lines of

Code

SLOC-L 61 Logical Executable Lines of

Code

MVG 13 McCabe VG Complexity

C&SLOC 0 Code and Comment Lines of

Code

CLOC 24 Comment Only Lines of Code

CWORD 150 Commentary Words

HCLOC 1 Header Comment Lines of Code

HCWORD 7 Header Commentary Words

Recursive Solution:

Symbol Count Definition

Source Files 1 Source Files

Directories 1 Directories

LOC 28 Lines of Code

BLOC 4 Blank Lines of Code

SLOC-P 23 Physical Executable Lines of

Code

SLOC-L 14 Logical Executable Lines of

Code

MVG 1 McCabe VG Complexity

C&SLOC 3 Code and Comment Lines of

Code

CLOC 1 Comment Only Lines of Code

CWORD 19 Commentary Words

HCLOC 1 Header Comment Lines of Code

HCWORD 5 Header Commentary Words

The comparative results of SLOC-P, which is an acronym

for Physical executable source lines of code that doesn‟t

include the lines for comments and the blank lines, shows a

significant reduction of 78.70 % (108 in Iterative solution

has been reduced to 23 in Recursive solution). Therefore,

recursive solution ensues in lesser programming effort,

increases the productivity by minifying the time required

and improving the maintenance of the computer program

after being operational.

V. PRINCIPLE #3 OF RCC GRAPH OPERATIONS

RCC, Rooted, Connected and Cycle-free graphs are referred

as Trees [4] with the following properties (a) One

distinguishable node is designated as “Root”, (b)

Throughout the data structure one and only one connection

is allowed between any pair of nodes by using a directed

edge only, (c) the direction of the edge is always from parent

node to child node only.

Tree data structure has implementations in several vital areas

of computer science, one of the most popular

implementation is the “File System”. Any implementation of

Tree data structure calls for abiding to the parent-child

relationship. This relation is the fundament of Tree data

structure, because by maintain this relationship one can

ensure a graph to be cycle-free, and the same rationale goes

for all the operations performed over any Tree data structure.

For example “Traversal of Tree” operation can be achieved

by DFS, BFS, In-order, Pre-order, Post-order, etc. all the

above algorithms can be implemented by looping as well as

with recursion. In iteration, to make the operation aligned

with the centre concept of Tree, i.e. parent-child

relationship, produces an additional overhead whereas in

recursion parent-child relationship is maintained inherently.

Every recursive call always returns to the caller method thus

making the caller method as parent and the called method as

child.

Therefore by making a recursive solution for Rooted,

Connected and Cycle-free graphs a programmer guarantees

the implementation is in complete accordance with the basis

concept on which Trees are built.

VI. PRINCIPLE #4 OF DYNAMIC CONTROL FLOW

In a computer program the order of executable statements

and function calls is referred as Control flow. Dynamic

control flow implies that the decision of the order of

execution can be taken at runtime.

A Programming language which is dynamic in nature is

basically a high-level language which has the ability to

execute common programming behaviors like new code

addition, object extension, changes in type system, etc at

runtime.

By Dynamic method dispatch [5] Java programming

language implements run-time polymorphism. A method call

to a method which is overridden is resolved at run time

rather than compile time by using this mechanism. By

definition recursion can appear in dynamic control flow as

compared to iteration which is designed for fixed control

flow and translation of dynamic control flow nature of

recursion is not gently possible in iteration.

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 66

Therefore, working in dynamic programming environment

which is implied in current era programming, the solution

generated by recursion will be more feasible as compared to

any other optimal solution.

VII. PRINCIPLE #5 OF SIMULATION

Simulation, by definition is an act of behavior imitation of

some process by means of something befittingly analogous.

It is also referred as an act of giving a false appearance, and

that is what exactly happens in some cases when a

programmer employs iteration in lieu recursion. For example

in State space search [6] problems, A state-space

representation is a 4-tuple 〈Q, q0, F, O〉, where:

Q: is the set of states, Q ≠ ∅,

q0 ∈ Q: is the initial state,

F ⊆ Q: is the set of goal states,

O: is the set of the operators, O ≠ ∅

If we create a graph referred as the State-Space Graph, then

the vertices/nodes of such a graph are the states. An edge

between two vertices exists if and only if one state is directly

accessible from another state. We label the edges with the

operator. A solution of a problem is a path that leads from a

vertex (initial vertex) to some vertex (goal vertex). Precisely,

the solution is the sequence of labels (operators) of the edges

that formulate this path.

Algorithm for solution using Recursion:

[Input root node as Q0, Solution node(s) as F]

1. Begin

2. If Q0 ∈ F, return Q0

3. Else, if generate-child-nodes (Q0) ≠ ∅ then

4. Recursive call (child-node)

5. Else return not-found

6. End.

Algorithm for solution using Iteration:

[Input root node as Q0, Solution node(s) as F]

1. Begin.

2. Declare Found ← False [Flag variable]

3. While Found ≠ True repeat the following

4. If Q0 ∈ F, exit while

5. Else, if generate-child-nodes (Q0) ≠ ∅ then push in stack

[Q0]

6. If next-child ∈ F, Found ← True, Traverse the stack by

pop operation

8. Else exit while.

9. Repeat from Step 5 with next-child.

10. End.

If we analyze the Iterative algorithm as solution then it is

nothing but a simulation of the Recursive algorithm for

solution. Iterative algorithm producing a imitation of

Recursive algorithm by explicitly performing push and pop

operations on stack, that is stacking and un-stacking. These

stack operations are performed inherently in Recursive

solution. Besides this, by performing Mccabe‟s cyclomatic

complexity analysis it can be very well seen that the

complexity of the Iterative solution is higher as compared to

the Recursive solution. Thus, if for generating a solution, an

algorithm has to simulate the behavior of some other

algorithm then it would always be a better choice to prefer

the original one.

VIII. PRINCIPLE #6 OF IPC

IPC, Inter-process communication, is a mechanism by which

processes can share and manage data between them.

Typically implemented as client-server model, where some

processes act as service providers and others as service

consumers. In distributed computing often processes do both

the roles.

In object oriented programming Inter Process

Communication model is employed for message passing, a

way by which objects can communicate with each other.

This sort of communication (two-way) requires values to be

passed to the receiver and returned to the sender for an

efficient messaging set up. Recursion, which is built on the

foundation of method mechanism, supports the message

passing model inherently, whereas any other solution like

with iteration the implementation of this message passing

model is inconceivable as loops are executable statements

and they don‟t accept or return values according to their

definition. Therefore, solutions targeted for messaging

passing behavior should consider recursion, as it facilitates

the proper implementation of the inter process

communication model.

IX. PRINCIPLE #7 OF STATE STORAGE

[Addressing the issue of Stack overflow]

Call stack or Execution stack is a data structure of stack type

that stores the data and information about the running

methods of a computer program.

When a computer program attempts to consume more

memory than the available memory in a call stack then the

stack point goes beyond the upper bound of the call stack

resulting in a runtime error situation called as “Stack

overflow” which may ultimately lead to program crash.

Because recursion uses call stack for the storage of parent

method‟s states, there is always a risk of stack overflow.

Corresponding Iterative solution to recursion also needs to

store the intermediate states by creating their own stack or

some other mechanism. In user defined stacks also there

exists the problem of overflow which the iterative solution

needs to manage. Recursion fails only when stack overflow

happens, so like iterative solution, if the programmer takes

into account the memory management recursion will become

error prone.

 International Journal of Computer Sciences and Engineering Vol.7(7), Jul 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 67

Therefore switching to iterative or any other mechanism in

place of recursion just to avoid stack overflow is not a wise

move as handling stack overflow is much easier as compared

to developing any other non recursive solution.

X. CONCLUSION

The current era is an age of Information Technology.

Everyday human life goes one step closer to a world driven

entirely by computer systems. To match this demand of high

growth of technology, software sector is working under

tremendous pressure. Several programming paradigms are

developed and are developing to ease the job of

programmers and yet maintaining the quality of service. By

gaining better understanding of recursion a programmer can

deliver an efficient high quality solution within the

deadlines. This paper has successfully established the

fundamental principles which can be referred anytime in

decision making process of implementing a recursive

solution. The study done in the above paper is limited to the

current programming frameworks only and provides the

future scope of discovering new principles in the developing

programming paradigms which are yet to be released.

REFERENCES

[1] Ronald L. Graham, Donald E. Knuth, Oren Patashnik, "Concrete

mathematics", Addison-Wesley Publishing Company, United States

of America, pp. 1-20, 1990, ISBN-13: 978-0201558029.

[2] John Hudson Tiner, "Exploring the World of Mathematics: From

Ancient Record Keeping to the Latest Advances in Computers",

New Leaf Publishing Group, United States of America, pp. 81-83,

2004, ISBN 978-1-61458-155-0.

[3] Nguyen, V., Deeds-Rubin, S., Tan, T., & Boehm, B. (2007,

October). A SLOC counting standard. In Cocomo ii forum (Vol.

2007, pp. 1-16). Citeseer.

[4] Seymore Lipschutz and Marc Lipson, “Schaum's Outline of

Discrete Mathematics”, McGraw-Hill Education, United States of

America, pp. 164-263, 2007, ISBN-13: 978-1259062537

[5] H. Schildt, “Java The Complete Reference Ninth Edition”,

McGraw-Hill Education, United States of America, pp. 178-179,

2014, ISBN: 978-0-07-180856-9

[6] E. Rich, K Knight, S. B. Nair, “Artificial Intelligence”, McGraw-

Hill Education, United States of America, pp. 25-30, 2009, ISBN:

978-0-07-008770-5

[7] U. Ray, T.K. Hazra, U.K. Ray, "Matrix Multiplication using

Strassen‟s Algorithm on CPU & GPU", International Journal of

Computer Sciences and Engineering, Vol.4, Issue.10, pp.98-105,

2016.

[8] N. Karthikeyan, "Shortest Route Algorithm Using Dynamic

Programming by Forward Recursion", International Journal of

Computer Sciences and Engineering, Vol.2, Issue.2, pp.44-48,

2014.

Authors Profile

 Mr. Rishi Saxena is working as an Asst.

Professor in the Department of Computer

Science, Sophia Girls‟ College, Ajmer (Raj).

He has PG & UG teaching experience of 9

years. His qualifications are BSc, Diploma in

Multimedia, PGDCA, MSc CS, MCA. He has

done Google certification in digital marketing and NPTEL

certification in Java Programming. He has cleared NET-

2015 & SET-2013 examinations in Computer Science. He

has written two research papers in International journals and

participated in fifteen National and International

conferences/seminars/workshops/FDPs. His areas of interest

are AI, Programming and Android App Development..

