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Abstract— This paper proposes a new calibration estimator for estimating the finite population mean in stratified random 

sampling using a calibration constraint which consider known median of the auxiliary variable. The result has been extended in 

case of stratified double sampling when median of the auxiliary variable is not known.  The efficiency of the proposed 

estimator has also been compared with the help of simulation study on a real dataset.  
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I.  INTRODUCTION  

Calibration estimation is a method of adjusting weights in 

survey sampling in order to estimate population parameters 

with the help of auxiliary information. The calibration 

approach became more popular in recent past years. The 

calibration estimation is a procedure of minimizing a 

distance function subject to calibration constraints using 

prior information on various parameters related to auxiliary 

variables such as mean, standard deviation, etc. to obtain the 

more precise estimators pertaining to variable under study 

[1]. The contribution in developing the calibrated estimators 

for different population parameters using different calibration 

constraints under many sampling schemes are due to many 

researchers such as [2], [3], [4], [5], [6], [7], [8], [9], etc.  

This paper suggests a new calibration estimator for 

population mean under stratified random sampling using a 

new calibration constraint which includes the median of the 

auxiliary variable. The use of median makes the estimator 

more efficient.  

This paper is organized in six sections. Section I contains the 

introduction of the calibration approach and its related 

research work. Section II describes some notations defined 

for calibration approach and the estimators suggested by [7] 

and [9]. Section III proposes calibration estimator in 

stratified random sampling. Section IV considers extension 

of the results so obtained in case of double sampling when 

population median of auxiliary variable is not known. 

Section V deals with the simulation study using R-software 

to check the performance of the proposed estimators with the 

estimators suggested by [7] and [9]. Section VI concludes the 

research findings of the paper.  

II. NOTATIONS DEFINED IN CALIBRATION 

APPROACH  

Let us consider a heterogeneous population U of size N 

which has been divided into L homogeneous subgroups 

called strata consisting of Nh units in h
th

 stratum such 

that
L

h

h 1

N N


 . A sample of size nh is drawn using simple 

random sampling without replacement (SRSWOR) from the 

h
th

 stratum such that
L

h

h 1

n n


 , where n is the required 

sample size. Suppose yhi and xhi is the i
th

 unit of the study and 

auxiliary variables, respectively, in the h
th

 stratum for i= 1, 2, 

..., nh and h = 1, 2, …, L. h

h

N
W

N
  is the h

th
 stratum weight 

and h

h

h

n
f

N
 is the h

th
 sample fraction. 

The objective is to estimate the population parameter, say 

mean
N

i

i 1

1
Y y .

N 

  The calibration estimator under the 

stratified random sampling for population mean Y defined 

by [10] is given as 

 
L

tr h h

h 1

y y


   (1) 

where h ; h = 1, 2, …, L are the new calibrated weights 

obtained by minimizing the Chi-square distance measure 
2L

h h

h 1 h h

( W )

Q W

 
 , subject to the two calibration constraints: 
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L L

h h h h

h 1 h 1

x W X
 

    (2) 

 
L L

2 2

h hx h hx

h 1 h 1

s W S
 

    (3) 

where 

hn

hi

i 1
h

h

x

x and
n




hN

hi

i 1
h

h

X

X
N




are the h
th

 stratum 

sample and population means of the auxiliary variable, 

respectively. 
h 2n

2 hi h

hx

i 1 h

(x x )
s and

(n 1)







h 2N
2 hi h

hx

i 1 h

(X X )
S

(N 1)





 are the h

th
 

stratum sample and population variances of the auxiliary 

variable, respectively. 

Minimization of Chi-square distance measure, subject to the 

calibration constraints mentioned above, the calibrated 

estimator given by [10] is 

 
L L L

2 2

tr h h t1 h h h t2 h hx hx

h 1 h 1 h 1

ˆ ˆy W y W (X x ) W (S s )
  

         

  (4) 

where 
L L L L

4 2 2

h h hx h h h h h h h hx h h h hx

h 1 h 1 h 1 h 1

t1 L L L
4 2 2 2

h h hx h h h h h h hx

h 1 h 1 h 1

( W Q s )( W Q x y ) ( W Q x s )( W Q y s )
ˆ

( W Q s )( W Q x ) ( W Q x s )

   

  



 



   

  

 
L L L L

2 2 2

h h h h h h hx h h hx h h h h

h 1 h 1 h 1 h 1

t2 L L L
4 2 2 2

h h hx h h h h h h hx

h 1 h 1 h 1

( W Q x )( W Q y s ) ( W Q s )( W Q x y )
ˆ

( W Q s )( W Q x ) ( W Q x s )

   

  



 



   

  

Similarly, the calibration estimator for population mean Y  under 

stratified random sampling given by Nidhi et al. (2017) is 

 

L

nc h h

h 1

y y


   (5) 

where h are the new calibrated weights obtained by 

minimizing the Chi-square distance measure 
2L

h h

h 1 h h

( W )

Q W

 
 , subject to the two calibration constraints: 

 
L L

h h h h

h 1 h 1

x W X
 

    (6) 

 
L

h

h 1

1


   (7) 

Minimizing Chi-square distance measure, subject to the 

calibration constraints, the estimator given by [7] is 

 
L L

nc h h nc h h

h 1 h 1

ˆy W y (X W x )
 

     (8) 

where 

L L L L

h h h h h h h h h h h h

h 1 h 1 h 1 h 1

nc L L L
2 2

h h h h h h h h

h 1 h 1 h 1

( W Q )( W Q x y ) ( W Q x )( W Q y )
ˆ

( W Q )( W Q x ) ( W Q x )

   

  



 



   

  
 

III. PROPOSED CALIBRATION ESTIMATOR 

In this paper, we present a new calibration estimator in 

stratified random sampling using median, a positional 

average of the auxiliary variable in defining the calibration 

constraints. The proposed estimator is defined as 

 
L

md h h

h 1

y y


   (9) 

where the calibration weights h ; (h = 1, 2, …, L) are 

chosen to minimize the Chi-square distance measure given as 

 
2L

h h

h 1 h h

( W )

W Q

 
  (10) 

subject to the following calibration constraint                                                           

 
L L

h h h h

h 1 h 1

m W M
 

    (11) 

where mh and Mh are the sample and population median of 

auxiliary variable, respectively. 

The Lagrange function is defined as 

 
 

2
L L L

h h

h h h h

h 1 h 1 h 1h h

W
L 2 ( m W M )

W Q  

 
        (12) 

where   is the Lagrange’s multipliers. To determine the 

optimum value of h , we differentiate the Lagrange 

function given in equation (17) with respect to h and 

equate it to zero. Thus, the calibration weight can be obtained 

as 

 h h h h hW (W Q m )    (13) 

Here   is determined by substituting the value of h  from 

equation (13) to equation (11), so this leads to a calibrated 

weight given as 

 

L

h h h

h 1

h h h h h L
2

h h h

h 1

W (M m )

W W Q m

W Q m





 
 

   
 
 
 




 (14)

 

After substituting the value of h  from equation (14) to (9), 

we obtain the proposed calibrated estimator as 

 
L L

md h h md h h h

h 1 h 1

ˆy W y W (M m )
 

 
   

 
   (15)

 

where 

L

h h h h

h 1

md L
2

h h h

h 1

W Q m y
ˆ

W Q m





 



 



   International Journal of Computer Sciences and Engineering                                     Vol.7(5), May 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        669 

Now consider the different values of hQ  to obtain the 

various forms of calibration estimator as follows:  

Case I: When hQ 1  

The calibration estimator becomes 
L L

md1 h h md1 h h h

h 1 h 1

ˆy W y W (M m )
 

 
    

 
 

 

where 

L

h h h

h 1

md1 L
2

h h

h 1

W y m
ˆ

W m





 



 

Case II: When 
h

h

1
Q

x
  

The calibration estimator becomes 
L L

md2 h h md2 h h h

h 1 h 1

ˆy W y W (M m )
 

 
    

 
 

 

where 

L
h

h h

h 1 h

md2 2L
h

h

h 1 h

m
W y

xˆ
m

W
x





 




 

Case III: When 
h

h

1
Q

m
  

The calibration estimator becomes 
L L

md3 h h md3 h h h

h 1 h 1

ˆy W y W (M m )
 

 
    

 
   

where 

L

h h

h 1

md3 L

h h

h 1

W y
ˆ

W m





 




 
IV. DOUBLE SAMPLING  

The above result can also be extended in case of stratified 

double sampling when the value of median is not known for 

each stratum. In this technique, a preliminary sample of size 

hn  units is drawn by SRSWOR as a first phase sample and a 

subsample of 
hn units is drawn from the preliminary sample 

of size 
hn units by SRSWOR. Let 

hn

h hi

i 1h

1
x x

n









 is the first 

phase sample mean. 
hn

h hi

i 1h

1
x x

n 

  and 
hn

h hi

i 1h

1
y y

n 

  are 

the second phase sample means of auxiliary variable and 

study variable, respectively. Thus, the proposed calibration 

estimator in case of stratified double sampling is given as 

 
L

d

md h h

h 1

y y



   (16) 

where the calibration weights h

 ; (h = 1, 2, …, L) are 

chosen to minimize the Chi-square distance measure  

 
2L

h h

h 1 h h

( W )

W Q





 
  (17) 

subject to the following calibration constraint                                                              

 
L L

h h h h

h 1 h 1

m W m 

 

    (18) 

where 
hm  is the first phase sample median of the auxiliary 

variable.  

The Lagrange function is given as 

 
2L L L

h h

h h h h

h 1 h 1 h 1h h

( W )
L 2 ( m W m )

W Q

 

  

 
        (19) 

where   is the Lagrange’s multiplier. For finding the 

optimum value of h

 , we differentiate the Lagrange 

function with respect to h

 and equate it to zero. Thus the 

calibration weight can be obtained as 

 

L

h h h

h 1

h h h h h L
2

h h h

h 1

( W (m m )

W W Q m

( W Q m )



 



 
 

   
 
 
 




 (20)  

After substituting the value of h

 from equation (20) to (16), 

the proposed calibrated estimator can be obtained as 

 
L L

d

md h h md h h h

h 1 h 1

ˆy W y W (m m )

 

 
    

 
   (21)

 
where  

 

L

h h h h

h 1

md L
2

h h h

h 1

W Q m y
ˆ

W Q m





 



 

Now the different forms of the calibration estimator for 

different values of hQ are considered as 

Case I: When hQ 1  

The calibration estimator becomes 

 
L L

d

md1 h h md1 h h h

h 1 h 1

ˆy W y W (m m )

 

 
    

 
 

 

where 

L

h h h

h 1

md1 L
2

h h

h 1

W y m
ˆ

W m





 




 
Case II: When 

h

h

1
Q

x


 
The calibration estimator becomes 

 
L L

d

md2 h h md2 h h h

h 1 h 1

ˆy W y W (m m )

 

 
    

 
 
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where 

L
h

h h

h 1 h

md2 2L
h

h

h 1 h

m
W y

xˆ
m

W
x





 




 

Case III: When 
h

h

1
Q

m
  

The calibration estimator becomes 

 
L L

d

md3 h h md3 h h h

h 1 h 1

ˆy W y W (m m )

 

 
    

 
   

where 

L

h h

h 1

md3 L

h h

h 1

W y
ˆ

W m





 




 
V. SIMULATION STUDY 

To compare the performance of the proposed estimators, real 

data of district wise wheat production of Uttar Pradesh for 

the year 2008-09 (www.agricoop.nic.in) are considered. In 

wheat production data, there are 63 districts, divided into 3 

strata of varying sizes. A stratified random sample according 

to proportional allocation is drawn using SRSWOR. A 

simulation study generating 50,000 samples is done using R-

software. For the comparison purpose, the empirical absolute 

relative bias and MSE, percentage relative efficiency of the 

estimators 
tr nc mdy , y and y are calculated. Let y denotes an 

estimator of Y and 
ky denotes the estimated value of y for 

the k
th

 sample (k = 1, 2, …, 50000). The empirical absolute 

relative bias of y  can be calculated as  

 
50000

k

k 1

y Y1
ARB(y)

50000 Y


   

The MSE of y is determined as

 
 

250000

k

k 1

1
MSE(y) y Y

50000 

     

The percent relative efficiency of the proposed estimator 
mdy  

with respect to the estimator y is computed as 

 
md

MSE(y)
%RE 100

MSE(y )
   

The results obtained from simulation study are given in 

Table 1 and 2 for stratified sampling and in Table 3 and 4 for 

stratified double sampling. 

Table 1: Absolute Relative Bias (Stratified Sampling) 

hQ  trARB(y )  ncARB(y )  mdARB(y )  

1 0.0021 0.0003 0.0156 

h

1

x
 0.0006 0.0001 0.0153 

h

1

m
 0.0011 0.0003 0.0155 

Table 2: MSE and %RE (Stratified Sampling) 

hQ   try  ncy  mdy  

1 

MSE 1378961568.39 203457455.86 132438081.87 

%RE 100 677.76 1041.21 

h

1

x
 

MSE 1379114324.45 202374902.62 136496613.39 

%RE 100 681.47 1010.37 

h

1

m
 

MSE 1449140610.60 203537650.21 139990467.32 

%RE 100 711.98 1035.17 

Table 3: Absolute Relative Bias (Stratified Double Sampling) 

hQ  d

trARB(y )  d

ncARB(y )  d

mdARB(y )  

1 0.0011 0.0004 0.0003 

h

1

x
 0.0004 0.0002 0.0003 

h

1

m
 0.0010 0.0004 0.0003 

Table 4: MSE and %RE (Stratified Double Sampling) 

hQ   d

try  d

ncy  d

mdy  

1 

MSE 
843727881.60 174662453.06 126191226.4850 

%RE 
100 483.062 668.6106 

h

1

x

 

MSE 
815126566.88 174079397.80 126380475.1870 

%RE 
100 468.2499 644.9782 

h

1

m

 

MSE 
841363974.62 174610670.15 126205879.8837 

%RE 
100 481.8514 666.6599 

It is cleared from the above tables that the MSE of the 

proposed estimators are less than the estimators given by [7] 

and [10].  

VI. CONCLUSION 

The new calibration estimators proposed in this paper to 

estimate the population mean in case of stratified random 

sampling and stratified double sampling using median of the 

auxiliary variable in defining the calibration constraint are 

found to be more efficient than [7] and [10]. From the 

simulation study carried out on a real, it can be seen that the 

proposed estimators are having less MSE than the estimators 

given by [7] and [10]. As a result, the suggested estimators 

http://www.agricoop.nic.in/
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are more efficient for 
h

h h

1 1
Q 1, and

x m
 for the given 

dataset. Thus, it can be concluded that the proposed 

estimators are more efficient than the estimators given by [7] 

and [10]. 
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