

 © 2016, IJCSE All Rights Reserved 59

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-04, Issue-09 E-ISSN: 2347-2693

Heuristic Approach for Designing a Focused Web Crawler using

Cuckoo Search

Joy Dewanjee

Department of Computer Science and Engineering,

Guru Nanak Institute of Technology, India

Available online at: www.ijcseonline.org

Received: 26/Aug/2016 Revised: 08/Sept/2016 Accepted: 21/Sept/2016 Published: 30/Sep/2016

Abstract— In order to find a geographical location in the Globe, we usually follow the geographical map. By a similar analogy,

a Web-page from the World Wide Web (WWW), we usually use a Web search engine. Web crawler design is an important job

to collect Web search engine resources from WWW. Millions of searches are done every minute around the Globe. A better

Web search engine resource leads to achieve a better performance of the Web search engine. WWW is a huge resource of

information. However this information is often spread throughout the internet via many Web servers and hosts. Every day

people are publishing their Web pages in the Internet, as a result the traffic overhead increases exponentially. In order to

produce a more accurate result, I have been motivated to follow a heuristic approach to design a Web crawler, which produces

the best optimized search result in minimal time. This paper has built an approach to generate the best result in by Cuckoo

Searching so that time will be least. I have divided my approach in two parts. First part is implementation of the crawler, which

includes “what to search for”, “from where to search” and even filters the unwanted data. Second part proposed a string

matching algorithm for producing the search result.

Keywords— Cuckoo search; DNS; meta-heuristic; optimization; pattern recognition; web crawling;

I. INTRODUCTION

The basic concept of web crawler is based upon the idea of
fetching information from the World Wide Web by analyzing
the different web pages and other resources. As being a
focused crawler, it is provided with an initial clue which helps
in the direction of search. Every individual search engine is
categorized and modularized in a finite and sorted fashion on
which the search engine mostly relies as it helps to provide the
best possible optimized results. Crawlers are miniaturized
block of codes that surf the web rather than the search engine,
similarly to how a regular person would seek and proceed to
links in order to view different pages. The crawlers are fed
with a set of starting seed i.e. the Unified Resource Locator
(URL), whose webpages need to be revived from the Web.
The crawler retrieves the URLs or hyperlinks present in the
retrieved pages, and gives this data to the crawler control
module. Then this module decides which links to follow, and
provides it to the crawlers. The crawler is made to work fast
by using an optimized search technique.

This crawling technology used the cuckoo search
algorithm [1] which is a recently formulated meta-heuristic
optimization algorithm, suitable for explaining optimization
problems. In order to increase the accurateness and
convergence rate of this crawler, an augmented crawler
algorithm is proposed which is based on the cuckoo search

optimization technique. When the crawler [2] is using URL to
look for any specific content, the basic motive of the cuckoo
search algorithm is to minimize the number of URLs the
crawler has to go through by securing a selected generation of
the URLs which is claimed to provide a better result based on
previous search statistics.

This focus based web crawler approach extracts files that

contain similar keyword from the input fed by the user; which

is implemented using breadth-first search. Now, pattern

recognition is applied when the web pages are extracted. A

file is given as input for the application of the pattern

recognition algorithm. Here, pattern mostly resembles text and

used to check the quantity of text available on the web page.

The algorithm used for pattern search is Knutt-Morris-Pratt

algorithm.

II. EXISTING WORK

In this section I have discussed some existing works carried

out by the Web researchers.

A. Web Creawling

Web crawler plays fundamental role in making the Web
easier to use for millions of people. A Web crawler is a
program which crawls through the WWW on behalf of the
search engine and downloads Web-pages in Web-page
repository for further processing by the search engine. For a

Corresponding Author: Joy Dewanjee, joydewanjee@ gmail.com

 Department of Computer Science and Engineering,

Guru Nanak Institute of Technology, India

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 60

Web crawler [3,4,5], Domain Name System (DNS) thread of
an URL first checks with the DNS database in order to resolve
the host name; if following is achieved, then the thread
extracts the IP from the database; or else, DNS threads tends
to get the IP from a DNS server. Then, a thread which is
already read receives the resolved IP address and tries to
establish an HTTP socket connection in order to seek for the
web page. After fetching the web page, the web crawler scans
the entire page content in order to look for any previously
visited link. If nothing is found, then it retrieves and
normalizes the URLs, checks the further possibility of
crawling, and also determines whether they are previously
visited or not. In order to reduce the server load some
timestamp has been fed to the crawler, so that it crawls until
the timestamp expires. If it is unable to fetch the result within
the provided timestamp, it will give default message stating
string not found; or else it will fetch the present links and
display and store it in the output file.

Various types of Web-page crawling mechanism have already

been introduced by the Web researchers. Significant resources

of the network are used by the web crawlers to construct a

comprehensive text index of the entire Web and thus keeping

it up-to-date. Cho and his team [6] had estimated that the

crawlers of big search engines can crawl up to ten million

pages every day. To reduce the pressure on the network,

Rajender and Satinder [7] proposed a novel mobile crawler

system based on filtering of non-modified pages. Shkapenyuk

and Suel [8], Paolo and co-workers [9] have proposed

distributed Web crawlers. Edwards and his team [10] have

proposed an adaptive model in order to optimize the efficiency

of an incremental Web crawler. Marc and co-workers [11]

have introduced a breadth-first crawling mechanism for

yielding high quality Web-pages. Around 20 years ago,

Pinkerton [12] has proposed a Web crawling mechanism for

finding what people want. Later on lots of researches were

carried out on focused crawling. Chakrabarti and his team

[13], Altingövde and Ulusoy [14], Zong and co-workers [15],

S Mewada [16], Pant and Srinivasan [17], Almpanidis and co-

workers [18], were proposed some focus crawling

mechanisms based on topic-specific Web resource discovery.

Diligenti and co-workers [19], Bergmark and co-workers [20]

have presented some efficient focus crawlering mechanism,

which used in digital libraries. There are plenty of research

work done by Web researchers on Web Crawler. I have also

proposed a new approach of designing a focused Web crawler

using Cuckoo Search.

B. Brief Idea of Cuckoo search Algorithm

The idea of most meta-heuristics [21] comes from the fact that

they are able to imitate the best and most unique features in

nature, especially in case of biological systems evolving from

natural selection over the time span. The most important

characteristics are selection of the fittest and adaptation to the

environment which can be translated into two crucial

characteristics of the modern meta-heuristics: intensification

and diversification [21, 22]. Intensification is the idea of

searching around the current best solutions and choose the

best solutions; whereas diversification determines whether the

algorithm can explore the search space more accurately and

efficiently. Here I have considered the following cuckoo

search algorithm [1] which is based on the behavior of cuckoo

birds:

Objective function: f(x), x= (x¬1, x2,…, xd),

• Generate an initial population of n host nests;

• While (t<MaxGeneration) or (stop criterion)

a. Get a cuckoo randomly (say, i) and replace
its solution by performing Lévy flights;

b. Evaluate its quality/fitness Fi [For
maximization, Fi α f (xi)];

c. Choose a nest among n (say, j) randomly;

d. If (Fi>Fj),

i. Replace j by the new solution;

 end if.

e. A fraction (pa) of the worse nests are
abandoned and new ones are built;

f. Keep the best solutions/nests;

g. Rank the solutions/nests and find the
current best;

h. Pass the current best solutions to the next
generation;

end while.

III. PROPOSED APPROACH

In this section, I have provided a brief ideology regarding my

proposed workflow:

A. Pseudo Code

The following pseudo shows the main working mechanism of
the proposed web crawler:

• Variable Initialization:

url: The address of the website for crawling

urls: Stack of scrapped urls .

visited: Historic record of the url.

tag: To store the filtered links for the best chosen
solution.

• Generate an initial population of host nests by storing
a list of links in the url variable;

• While (length of url >0)

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 61

a. Get a cuckoo randomly or say an instance of
the input (say, i) and replace its solution by
popping out the links from the stack which
are already searched using the visited
variable;

b. Evaluate its quality/fitness

i. Parse the html content gathered
from the url and look for a
particular tag attribute to pin point
the links available in the webpage.

ii. If (link is not present in the
previous visited section) then,

Store the links in a variable along
with its tag name;

Add the following links to the
same variable;

Normalize the content;

end if.

c. Keep the best solutions by storing the
filtered links;

d. Rank the solutions and find the current best
by sorting the links as per priority;

e. Pass current best solutions to the next
generation and continue crawling;

end while.

B. Pattern Matching Algorithm

The idea of pattern recognition is used here only for text

matching purpose. Knutt-Morris-Pratt (KMP) algorithm [23,

24] works in such a way that pattern and text are put into

comparison in a left to right scan. If any similarity is, the

algorithm will search for the longest suffix of the “first start”

which also serves as prefix of the pattern and thus decides

how far the pattern can slide to the right without the

consequence of missing a possible similarity. The basic

ideology behind KMP’s algorithm is: whenever a mismatch is

detected (after some matches), already knowing some of the

characters in the text (since they were similar with the

characters in the pattern prior to the mismatch). Advantage is

taken of this information in order to keep away from matching

the characters that is known to match anyway. The algorithm

performs some preprocessing over the pattern pt[] and builds

an auxiliary array lps[] of size m (same as size of pattern).

Here, name lps indicates longest proper prefix which is also

suffix. For each sub-pattern pt[0…i] where i = 0 to m-1, lps[i]

storing the maximum length of the similar prefix which is also

a suffix of the sub-pattern pt[0..i].

• Example:

Input: text[] = "AABAACAADAABAAABAA"

 pt[] = "AABA"

Output: Pattern found in index 0

 Pattern found in index 9

 Pattern found in index 13

• Algorithm:

Input: pat (pattern text file) string with m number of
characters and target web page.

Output: number of comparison the algorithm
performs for finding similarity and the time taken to
perform the said task.

while(j+i < length_of_s): //character
similarity for parallel characters

a. If (pat[i] == s[j+i]) then: //reached
the end of pattern, match found.

i. If (i == length_of_pat –1)
then:

return j;

end if.

ii. i=i+1; //parallel
characters do not match,
shift pattern along

b. else

i. j=j+i-txt[i];

ii. If (txt[i] > –1)

 i = txt[i];

else

 i = 0;

end if.

end if

end while.

IV. EXPERIMENTAL ANALYSIS

According to the implementation of the crawler, I have seen

that this focused crawler saves a lot more time rather than any

general web crawler. Thus the focused crawler has a better

time complexity than regular crawler but it lacks in the field of

space. Speaking of space complexity, the focused crawler

utilizes a lot of space as I have to save data at each iteration in

order to use it later checking to make the algorithm faster.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 62

Figure 1. Difference in traffic overhead of regular web

crawler and focused web crawler

Figure 2. Accuracy measure of the proposed focused web

crawler

I was able to reduce the space complexity by setting an

overhead limit. The crawler will not search for any particular

content for infinite iterations, I can set a limit to how many

iterations the algorithm would work for at a particular point of

time. As per the Fig. 1 given graph plot, we can clearly see

that after a certain point of time the traffic overhead increases

rapidly in case of a regular web crawler. This occurs due to

overflow of content over the internet and crawler fails to filter

its search content from others. But in case of a focused web

crawler, the overhead increases initially as it has to seek

through various contents and update the data contents, but as

the iterations increases, the complexity of search decreases

and follows a more sorted fashion. In Fig. 2, I have presented

the accuracy percentage of the focused crawler by taking a

small volume of data set. However the focus crawler deals

with high volume of Web-pages.

V. CONCLUSION

Thus, in a nutshell, a crawler can be defined as a block of

code that downloads web pages, which is mostly done for
search engines. The fast growth of World Wide Web poses
challenges in searching for a particular link. Focused web

crawler is designed to retrieve only the necessary web pages
from topics of interest from the Internet. In this paper I used
the cuckoo search optimization technique on the focused web
crawler. The implemented web crawler is able to formulate a
comparison based on the text found in a link with the text file
provided as input. This web crawler uses pattern recognition
algorithms and formulates repetition of the input text present
in the text found on a link. The limitation of this approach is
that I have considered only the html web pages.

The crawler performs the pattern recognition using Knutt-

Morris-Pratt algorithm in order to normalize the content of the

output. The information so produced gives an ideology

regarding the accuracy of the pattern matching algorithm. The

crawler designed is using only a single type of text mining.

The crawler can be further modified to implement other text

mining methodology and thus can be used in other efficient

techniques and different security features can also be

incorporated in the algorithm to provide a security aspect to

this algorithm.

REFERENCES

The following references were considered while working and

formulation of this research work:

[1] Yang X., Deb S.: “Cuckoo Search via Levy Flights”.

World Congress on Nature & Biologically Inspired

Computing, 2009.

[2] Hu K., Wong W.S.: “A Probabilistic Model for Intelligent

Web Crawlers”, 27th Annual International Computer

Software and Applications Conference.

[3] Sun Y., Councill I. G., Giles C. L.: “The Ethicality of Web

Crawlers”, IEEE: International Conference on Web

Intelligence and Intelligent Agent Technology, 2010.

[4] Ntoulas A., Cho J, Olston C.: “What's New on the Web?

The Evolution of the Web from a Search Engine

Perspective”, World-wide-Web Conference (WWW), May

2004.

[5] Arasu A., Cho J., Molina H. G., Paepcke A., Raghavan S.:

“Searching The Web”, Computer Science Department,

Stanford University.

[6] Cho J., Garcia-Molina H., Page L., “Efficient Crawling

Through URL Ordering,” Technical Report, Computer

Science Department, Stanford University, Stanford, CA,

USA, 1997.

[7] Nath R., Bal S., “A Novel Mobile Crawler System Based

on Filtering off Non-Modified Pages for Reducing Load

on the Network,” Intenational Arab Journal of Information

Technology, Vol. 8, Issue 3, pp.(272-279), 2011.

[8] Shkapenyuk V., Suel T., “Design and Implementation of

A High Performance Distributed Web Crawler,” 18th

International Conference on Data Engineering, San Jose,

CA, IEEE CS Press, pp.(357-368), 2002.

[9] Boldi P., Codenotti B., Santini M., Vigna S., “Ubicrawler:

A scalable fully distributed web crawler,” 8th Australian

World Wide Web Conference, AUSWEB02, pp.(1-14),

Australia, 2002.

 International Journal of Computer Sciences and Engineering Vol.-4(9), Sep 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 63

[10] Edwards J., McCurley K. S., Tomlin J. A., “An adaptive

model for optimizing performance of an incremental web

crawler”, 10th Conference on World Wide Web, Elsevier

Science, pp.(106-113), Hong Kong, 2001.

[11] Najork M., Wiener J. L., “Breadth-first crawling yields

high-quality pages”, 10th Conference on World Wide

Web, Elsevier Science, pp.(114-118), Hong Kong, 2001.

[12] Pinkerton B., “Finding what people want: Experiences

with the WebCrawler”, 1st World Wide Web Conference,

Geneva, Switzerland, 1994.

[13] Chakrabarti S., Berg M., Dom B. E., “Focused Crawling:

a New Approach to Topic-specific Web Resource

Discovery”, 8th International World Wide Web

Conference, Elsevier, pp.(545-562), Toronto, Canada,

1999.

[14] Altingovde I. S., Ulusoy O., “Exploiting interclass rules

for focused crawling”, IEEE Intelligent Systems, Vol. 19,

Issue 6, pp.(66-73), DOI: 10.1109/MIS.2004.62, 2004.

[15] Zong X. J., Shen Y., Liao X. X., “Improvement of HITS

for topic-specific web crawler”, Advances in Intelligent

Computing, ICIC 2005, Part I, Lecture Notes in Compter

Science, Vol. 3644, pp.(524-532), 2005.

[16] Shivlal Mewada, Sharma Pradeep, Gautam S.S.,

“Classification of Efficient Symmetric Key Cryptography

Algorithms”, International Journal of Computer Science

and Information Security (IJCSIS) USA, Vol. 14, No. 2,

pp (105-110), Feb 2016

[17] Pant G., Srinivasan P., “Link contexts in classifier-guided

topical crawlers”, IEEE Transactions on Knowledge and

Data Engineering, Vol. 18, Issue 1, pp.(107-122), 2006.

[18] Almpanidis G., Kotropoulos C., Pitas I., “Focused

crawling using latent semantic indexing-An application

for vertical search engines”, Research and Advanced

Technology for Digital Libraries, Lecture Notes in

Computer Science, Vol. 3652, pp.(402-413), 2005.

[19] Diligenti M., Coetzee F., Lawrence S., Giles C. L., Gori

M., “Focused crawling using context graphs”, 26th

International Conference on Very Large Databases,

VLDB, Morgan Kaufmann, pp.(527-534), San Francisco,

2000.

[20] Bergmark D., Lagoze C., Sbityakov A., “Focused crawls,

tunneling, and digital libraries,” European Conference on

Digital Libraries, ECDL 2002. Lacture Notes in Computer

Science, Roma, Italy, Vol. 2458, pp.(91-106), 2002.

[21] Blum C., Roli A.: Metaheuristics in combinatorial

optimization: Overview and conceptural comparision,

ACM Comput. Surv, 35, Page No. (268- 308), 2003.

[22] Yang X., “Nature-Inspired Metaheuristic Algorithms”.

Feb, 2008.

[23] Cormen T. H., Leiserson C. E., Rivest R. L.,: Introduction

to Algorithm, Prentice-Hall of India Private Limited, 7th

ed, 2009.

[24] Abe U., Brandenburg. :String Matching., Page No (1–9),

Sommersemester 2001.

AUTHORS PROFILE

Mr. Joy Dewanjee pursued Bachelor of

Technology from Guru Nanak Institute of

Technology, West Bengal University of

Technology, India in year 2015. He is currently

working as an Assitant System Engineer in Tata

Consultancy Services. His main research work

focuses on Heuristic Algorithms, Web-based

optimization techniques, Nucleotide sequencing and alignment in

Biotechnology.

