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Abstract: We propose an enhanced variant of the traditional Fuzzy C-Means (FCM) algorithm tailored for leveraging 

neighbourhood information in non-image datasets residing in Euclidean space. Our novel methodology aims to capitalize on 

spatial contextual cues inherent in such datasets, thereby complementing the inherent fuzziness of individual data points. 

Through the incorporation of neighbourhood information, our approach extends beyond the limitations of conventional FCM, 

leading to improved clustering performance. We validate the efficacy of our method using synthetic and real datasets, 

demonstrating its superiority over conventional FCM in capturing spatial relationships within the data. Our findings underscore 

the effectiveness of our approach in enhancing clustering outcomes by strategically incorporating neighbourhood information 

into the FCM framework for non-image data in Euclidean space. 
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1. Introduction  
 

In the expansive landscape of clustering methodologies, 

Fuzzy C Means (FCM) has garnered widespread acceptance, 

offering a versatile approach to data partitioning [1]. Re- 

searchers have routinely leveraged FCM for clustering tasks, 

showcasing its effectiveness in various applications. 

Notably, in the domain of image segmentation, the literature 

abounds with studies employing FCM, with a particular 

emphasis on exploiting neighbourhood pixel information to 

enhance segmentation accuracy [2], [3]. However, a 

conspicuous research gap becomes evident – while FCM with 

spatial information has been adeptly applied in image-based 

studies, its application to non-image datasets remains largely 

unexplored. 
 

The K-means clustering method is known for its simplicity, 

but it imposes a strict assignment of each pixel to  one group 

only. In contrast, Fuzzy C-Means (FCM) introduces 

membership degrees, allowing pixels to belong to 

multiple clusters simultaneously, determined by their 

membership degrees [4]. While FCM has proven significant 

in various applications, it has some shortcomings, such as the 

lack of con- sideration for spatial context in images. This 

extension renders it vulnerable to noise and imaging artifacts 

such as intensity inhomogeneity. Additionally, FCM may 

converge to local optima due to poor initialization [5]. 

Consequently, modifications have been proposed to enhance 

its robustness for image segmentation. 

Robust FCM (RFCM) using a penalty term into the objective 

function has been proposed in [6]. Nevertheless, the objective 

function of RFCM demonstrates intricate variations in the 

membership function. Another approach, spatial FCM 

(SFCM), adjusts the membership function by integrating 

spatial information, showing improved performance but 

remaining  sensitive to serious noise [7].  

 

Fast Generalized Fuzzy C-Means (SFFCM) was proposed 

where they used spatial information for brain MRI 

segmentation, yet its performance degrades with significant 

noise [8]. Maximized fuzzy partition entropy with 2D 

histogram for MRI segmentation also be used but suffered 

from high time complexity [9]. Modified versions of FCM have 

been proposed, including non-local FCM (NL/FCM) and 

FCM with non-local spatial information, both addressing 

robustness against noise and inhomogeneity but showing 

limitations under high noise levels [10], [11]. 

 

An updated FCM approach  has been developed by changing 

the objective function to include a Gray-difference 

coefficient, aiming to enhance performance against noise 

[12]. These adaptations demonstrate ongoing efforts to 

address the limitations of FCM in image segmentation, with 

each method presenting its advantages and trade-offs. 

 

The prevailing trend in the literature underscores a 

concentration of efforts towards leveraging FCM for image 

segmentation, where the incorporation of spatial information 
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is pivotal for capturing contextual relationships among 

neighbouring pixels. Yet, the omission of FCM with spatial 

information from non-image data analysis raises questions 

about the algorithm’s untapped potential beyond the visual 

domain. 

 

This research endeavour seeks to address this noteworthy gap 

in the literature. In our work, we aim to bridge the divide by 

introducing FCM with spatial information to the realm of 

non-image data, propelling the algorithm into uncharted 

territories. By expanding FCM’s application beyond the 

confines of image analysis, our research endeavours to shed 

light on its adaptability and efficacy in discerning cluster 

structures within diverse datasets. 

 

There are several works has been done on spatial constraint. 

Conventional FCM is very sensitive on noise and outliers. To 

overcome that a deformable strategy is adopted in [13]. They 

used a neighbourhood window using the form of free 

deformation. The Fuzzy c-means (FCM) clustering algorithm 

stands as a prominent technique in both greyscale and color 

image segmentation, particularly renowned for its efficacy in 

real-color image processing. Nevertheless, its performance in 

the extraction of regions of interest often falls short, primarily 

attributed to the utilization of a singular distance metric in the 

traditional FCM framework. To address this constraint, 

researchers have introduced an inventive method called the 

Fuzzy C-means clustering algorithm based on Super pixel 

Merging and Multi-feature Adaptive Fusion Measurement 

(FCM-SM) [14]. An approach incorporating adaptive spatial 

and intensity constraints, coupled with membership linking, 

has been suggested to tackle the segmentation challenges 

posed by noisy images [15]. Kernelization of FCM is another 

popular method to analyse images to exploit neighbourhood 

pixel information [16]. Intuitionistic fuzzy set theory based 

approach also be there to exploit spatial constraint [17]. In all 

the literature, they exploit neighbourhood information in 

spatial domain. 

 

The novelty of our work lies in the exploration of spatial 

information as a guiding principle for cluster formation in 

non-image datasets. Recent studies have suggested that spatial 

relationship, albeit abstracted from pixel neighbourhoods, 

play a crucial role in understanding the inherent structure of 

diverse data types [18], [19]. This departure from 

conventional FCM applications opens avenues for uncovering 

hidden patterns and relationships that may have been 

overlooked in conventional clustering approaches.  

 

As we embark on this exploration, the potential impact of our 

work extends beyond a mere methodological innovation. The 

introduction of FCM with spatial information to non- image 

data analysis not only broadens the algorithm’s applicability 

but also holds promise for unveiling nuanced cluster 

structures in datasets. 

 

To illustrate our idea, we take a synthetic dataset first and 

address the problem to find a true cluster structure using 

FCM. Then, we take the spatial information to solve that issue. 

We also study real datasets as well. In the following, we 

discuss the FCM algorithm with spatial information in section 

2. Next, we describe the results in section 3. Discussion of 

the result is in section 4. In section 5, we have the  

conclusion and future scope. 

 

2. FCM with spatial information 

 

The FCM objective function to cluster a dataset 

 

{𝑥𝑘}𝑘=1
𝑛  ∁ 𝑅𝑑 is represented as [1] 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘
𝑚 𝑛

𝑘=1 ||𝑥𝑘 − 𝑣𝑖||
2𝑐

𝑖=1                      (1) 

 

where c stands for clusters and n is the number of samples.    

|| · || stands for the Euclidean norm. The function is 

minimized under the following constraints: 

 C1: 𝑢𝑖𝑘 ∈ [0,1]    ∀𝑖, 𝑘 

 C2: ∑ 𝑢𝑖𝑘 = 1    ∀𝑘𝑐
𝑖=1  

 C3: 0<∑ 𝑢𝑖𝑘 < 𝑛    ∀𝑖𝑛
𝑘=1  

 

In Equation 1, 𝐽𝑚  provides a good result when the 

clusters are well grouped and separated from one another. 

Consider a dataset where the clusters are not well separated, 

rather one cluster is gradually approaching to other (Figure 

1). In Figure 2, we have shown the result for two clusters for 

m = 1.5. It is noted that FCM could not find the natural 

cluster structure. So the proximity of the data is not preserved 

in FCM. Then, why FCM fails here? The reason is, FCM 

works on the principle of sum of squared error where the 

distance of each sample is measured from the centre of 

each cluster. The points that are closer to a cluster centre, 

their membership values for that cluster are higher. So, from 

Figure 2, the misclassified data points (marked in red in the 

green cluster) are much closer to the cluster centre marked in 

red compared to the green cluster. Therefore, the FCM 

algorithm could not preserve the proximity of the data points 

in a cluster. This scenario often occurs due to outliers and 

raises challenges in understanding and assessing clustering 

results. 

 

 
Figure 1. Synthetic dataset 
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Figure 2. Clustering using FCM (c=2, m=1.5) 

 

In [20], a technique is proposed to enhance the robustness of 

the standard Fuzzy C-Means (FCM)algorithm by adding a 

penalty term with the objective function of FCM as below: 

          𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑘
𝑚 𝑛

𝑘=1 ||𝑥𝑘 − 𝑣𝑖||
2𝑐

𝑖=1   

+
∝

𝑁𝑅
 ∑ ∑ 𝑢𝑖𝑘

𝑚 𝑛
𝑘=1 ∑ ||𝑥𝑟 − 𝑣𝑖||

2
𝑟∈𝑁𝑘

𝑐
𝑖=1                         (2) 

 

where 𝑁𝑘  is the set of neighbours of 𝑥𝑘  and 𝑁𝑅 is its 

cardinality. Note that, the first term is the conventional FCM. 

The second term is the penalty term to exploit the 

neighbourhood information. The effect of the penalty term is 

controlled by the parameter . Increasing the value of , we 
give more emphasize on the penalty term. The penalty 

term is added to exploit the spatial constraint so that the 

continuity on neighbouring pixels around 𝑥𝑘 is maintained. 

The objective function can be minimized under the same 

constraints as standard Fuzzy C-Means. Note that, in [20], 

they have used it to segment image data, as  in image we 

have the advantage to get the neighbouring information in 

terms of pixels. In [20], [21], they have used ||𝑥𝑟 − 𝑣𝑖||
2 to 

measure the spatial distance in  an  image.  Here, we use the 

Euclidian distance to capture the spatial information. In 

Figure 1, we do not have such pixels information, still we use 

the model proposed in [20] to exploit the spatial 

information. 

 

Using Lagrange multiplier, 𝑢𝑖𝑘 of the k-th sample to the i-th 

cluster can be deduced as: 

 

𝑢𝑖𝑘 =
(||𝑥𝑘−𝑣𝑖||

2
+

∝

𝑁𝑅
 ∑ ||𝑥𝑟−𝑣𝑖||

2
)𝑟∈𝑁𝑘

−
1

(𝑚−1)

∑ (||𝑥𝑘−𝑣𝑗||
2

+
∝

𝑁𝑅
 ∑ ||𝑥𝑟−𝑣𝑗||

2
)𝑟∈𝑁𝑘

−
1

(𝑚−1)𝑐
𝑗=1

                                      (3) 

 

Equation 3 is derived using the first order necessary 

condition of optimality with respect to U, i.e., by setting the 

first order derivative of Equation 2 with respect to zero. 

The expression of the prototype can be shown as 

 

𝑣𝑖 =
∑ 𝑢𝑖𝑘

𝑚(𝑥𝑘+
∝

𝑁𝑅
 ∑ 𝑥𝑟)𝑟∈𝑁𝑘

𝑛
𝑘=1

(1+∝) ∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1

               (4) 

 

Equation 4 is obtained from the first order necessary 

condition of optimality of 𝐽𝑚 with respect to v. 

We call this algorithm as FCMS (FCM-Spatial) and the  

corresponding algorithm is shown in Algorithm-1. 
 

Algorithm 1: FCMS 

1. Fix c (no. of clusters), tmax (no. of iteration), m>1 

and 𝜖 > 0,  

2. Initialize u 

3. For t=1,2, …, tmax do 

Update 𝑣𝑡+1 = [𝑣𝑖𝑘
𝑡+1]cxd using to equation (4) 

Update U=[𝑢𝑖𝑘]cxn uing to equation (3) 

         until 

∑ ∑ |𝑢𝑖𝑘
(𝑡+1)

− 𝑢𝑖𝑘
(𝑡)

| < 𝜖𝑛
𝑘=1

𝑐
𝑖=1                                  (5) 

         is satisfied. 

 

4. Return V and U. 

In the following section, we utilize both synthetic and real 

datasets to evaluate the model performance. We again 

emphasize that we exploit the model on non-image data and 

use the proximity of the sample to assign a cluster label. As 

per our knowledge, the model is only used so far on image 

data to use the neighbourhood pixels information. 

 

3. Results and Discussion 
 

We have conducted experiments on two synthetic datasets 

and four real datasets. First, we use two synthetic datasets: 

Data Set-1 (Figure 3a) and Data set-2 (Figure 3b), all in R
2
 

because the ground truth of such datasets is known. So, we 

can visually examined the output. Finally, we have studied 

the performance on four real datasets (Table 5). 

 

3.1 Studies on the synthetic datasets 
To analyse the performance of the model (Equation 2), we 
first consider two synthetic datasets as below: 

Data Set-I: Figure 3a represents the Data Set-1, which 

contains two clusters out of which one is gradually 

approaching to the other. The bigger cluster contains 547 

points and the smaller one contains 201 points. 

Data Set-II: Figure 3b displays the Data Set-II. The 

datapoints for the two clusters are 200 and 20 respectively. 

 

 
 

 
 

Figure 3: Synthetic datasets used in the study 

In all the clustering output, distinct clusters will be visually 
represented using separate colours. We study the effect of 
FCM and FCMS on Data Set-I and II. To generate the 

results, we use m = 1.5 and 2,  = 10
—5

, tmax = 100. 

(b) Dataset-I (a) Dataset-II 
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First, we consider the Data Set-I (Figure 3a). In the data set 

two clusters are there and one cluster is gradually approaching 

to the other. We first examine the behaviour of the FCM 

algorithm. The result is shown in Figure 2 for m=1.5. Note 

that, here FCM fails to find the natural partition. As discussed 

already, it is due to the fact that the proximity of a sample 

is not preserved in FCM. We clearly see that points from 

the green cluster which are close to the red cluster are miss 

clustered. We have tested the result for several run as well as 

for different fuzzifier (m). 

Now, we apply the FCMS algorithm on the same data set. 

We study the behaviour of FCMS with the following 

parameters: 

 m = 1.5, 2 

  = 2, 3 

 Nk = 10, 15, 30, 50, 80 

In Figure 4, we have shown the results of different clusters for 

m= 1.5,  = 2 and Nk = 10, 15, 30, 50, 80. It is seen that, with 

the increase of the neighbours there is an improvement in the 

clustering result. If we compare Figure 4a with Figure 4e, it is 

easily seen that in Figure 4e the proximity of the data points is 

well preserved. The number of misclassification is reduced 

when Nk = 80. To provide a quantitative evaluation of the 

clustering outcomes, we use Normalized Mutual Information 

(NMI) [22] and Adjusted Rand Index (ARI) as the cluster 

validity indexes [23], [24]. High values of NMI & ARI 

indicate better clustering results. Maximum value of both the 

index is 1. In Table 1, we summarise the results. It is observed 

that both the indexes increase with the number of neighbours 

(Nk). It is noted that in spite of increasing the neighbour, we 

could not get the proper cluster as one point is still miss-

clustered. To overcome that, we go for the hard clustering by 

setting m = 1.01. The corresponding result is shown in Figure 

5 and  the NMI and ARI in Table 1. 

 

 

                               

 

            

 

 

Figure 4: FCMS with no. of clusters=2, m = 1.5 and  = 2 

 
Figure 5: FCMS with no. of clusters=2, m = 1.01,  = 2 and Nk = 50 

 
Table 1: NMI & ARI using FCMS for different selection of Nk. 

Number of clusters =2 and =2. 

m Nk NMI ARI 

1.5 

5 

10 

15 

30 

50 

80 

0.85 

0.87 

0.87 

0.88 

0.97 

0.98 

0.91 

0.92 

0.92 

0.93 

0.98 

0.99 

1.01 50 1.00 1.00 

 

To check the sensitivity of the hyper-parameters, we have 

studied the effect of the neighbours on the Data Set-I (Figure 

3a) for (m = 1.5 &  = 3), (m = 2 &  = 2) and (m = 2 &  = 

3). The outcomes corresponding to these parameters settings 

are depicted in Figure 6, Figure 7, and Figure 8 respectively.. 

The NMI and ARI of the above combination are noted in 

Table 2, Table 3 and Table 4 respectively. In all the cases it is 

obvious that the proximity of the data is preserved while 

clustering. 

 

  

       

 

(a) Nk=10 (b) Nk=15 

(c) Nk=30 (d) Nk=50 

(e) NK=80 

(b) Nk=10 (a) Nk=15 

(d) Nk=30 (c) Nk=50 
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Figure 6: FCMS with no. of clusters=2, m = 1.5 and  = 3 

 

 

 

 

 

Figure 7: FCMS with no. of clusters=2, m = 2 and  = 2 

 

 
 

 

 

 
 

 

 
 

 

Figure 8: FCMS with no. of clusters=2, m = 2 and  = 3 

 

In Equation 1, 𝐽𝑚  serves as a suitable criterion when the 

clusters exhibit compact, well-separated formations. 

However, a less apparent issue arises when there are 

significant variations in the sample numbers across different 

clusters. Under such circumstances, a partition favoring the 

splitting of a large cluster may be preferred over one 

preserving the natural cluster integrity. To illustrate that issue, 

we take Data Set-2 (Figure 3b). First, we implement FCM 

with m = 1.5 and 2. The corresponding result is shown in 

Figure 9. It is clear that the result is not intuitive. In both the 

cases FCM fails to find the proper clusters. 

 

Now, we have implemented the FCMS on Data Set-II. The 

result is shown in Figure 10a. It is noticed that for m = 1.5,  

= 2, and Nk = 5 (Figure 10a) and m = 2,  = 2, and Nk = 20 

(Figure 10b), FCMS produces intuitive result. It is noted that, 

for a higher value of ‘m’, the number of neighbours  is more 

to get the proper cluster. 

 

3.2 Studies on real datasets 

We use real dataset from the UCI Machine Learning 

Repository. We take four datasets as listed in Table 5. The 

parameter we have used in FCMS algorithm for each dataset 

is tabulated in Table 6. All the combinations of each 

parameter (m,  and Nk) as shown in Table 6 for each dataset 

are evaluated. To compare the result of FCM with FCMS, we 

cluster the data using FCM with m = 1.5 and m = 2. For better 

visualization, we have reported NMI by taking all the 

combinations of the hyper-parameter as shown in Table 6. 

The corresponding value of NMI is shown in Figure 11. In 

each figure, last two bars indicate NMI for FCM ( one for m 

= 1.5 

 
Table 2: NMI & ARI using FCMS for different selection of Nk. 

Number of clusters =2, m=1.5 and =3. 

Nk NMI ARI 

5 

10 

15 

30 

50 

80 

0.85 

0.86 

0.85 

0.87 

0.95 

0.97 

0.91 

0.92 

0.92 

0.92 

0.98 

0.98 

 
Table 3: NMI & ARI using FCMS for different selection of Nk. 

Number of clusters =2, m=2 and =2. 

Nk NMI ARI 

5 

10 

15 

30 

50 

80 

0.85 

0.86 

0.85 

0.87 

0.95 

0.97 

0.91 

0.92 

0.91 

0.92 

0.98 

0.99 

(e) Nk=80 

(b) Nk=10 (a) Nk=15 

(d) Nk=30 (c) Nk=50 

(e) Nk=80 

(a) Nk=10 (b) Nk=15 

(d) Nk=30 (c) Nk=50 

(e) Nk=80 
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Table 4: NMI & ARI using FCMS for different selection of Nk. 

Number of clusters =2, m=2 and =3. 

Nk NMI ARI 

5 

10 

15 

30 

50 

80 

0.85 

0.86 

0.86 

0.87 

0.97 

0.98 

0.90 

0.92 

0.92 

0.92 

0.99 

0.99 

 
Table 5: Real dataset 

Dataset Instances Features Class 

IRIS 

WINE 

MUSK 

SONAR 

150 

178 

476 

208 

4 

13 

166 

60 

3 

3 

2 

2 

 

 
 

 

Figure 9: Applying FCM on Dataset-II with no. of clusters=2 

  
 

 

Figure 10: Applying FCMS on Dataset-II with no. of clusters=2 

and other for m = 2) and the rest are for FCMS. The black 

horizontal line denotes the highest NMI among the two 

results of FCM, i.e., for m = 1.5 and m = 2. It is seen that in 

all the dataset, there are many cases, where FCMS 

outperforms FCM. 

 
Table 6: Study on real datasets for m = 1.5, 2 and  = 2, 3, 5, 7, 10 with 

different Nk 

Dataset Nk 

IRIS 5, 10, 15, 20, 25, 30, 35, 40 

WINE 5, 10, 15, 20, 25, 30, 35, 40, 50, 60 

MUSK 5, 10, 15, 20, 30, 40, 50, 70, 90, 120, 150, 180, 200 

SONAR 5, 10, 15, 20, 25, 30, 35, 40, 50, 70, 90 

 

4. Discussion 
 

FCMS, an extended version of the Fuzzy C-Means (FCM) 

algorithm, emerges as a solution to the limitations 

encountered by conventional clustering methods in complex 

scenarios. While FCM excels in scenarios with well-defined, 

separated clusters, its performance falters when confronted 

with datasets exhibiting unclear cluster boundaries or spatial 

continuity. FCMS is specifically crafted to address this 

challenge by integrating spatial information, setting it apart 

from conventional FCM algorithms primarily applied to 

image data. 

 

 
Figure 11: Values of NMI for all combination as shown in Table 6. 

Black horizontal line indicates the NMI for FCM 

 
Typically, spatially constrained FCM algorithms find their 

niche in image processing, leveraging spatial information 

in the proximity of pixels. However, FCMS extends this 

paradigm beyond the image data, showcasing its adaptability 

on non-image datasets. The essence of spatial information 

roves pivotal, especially when dealing with datasets where 

natural cluster lacks compactness and distinct separation. 

 

The conventional FCM objective function relies on 

minimizing squared errors based on Euclidean distances 

between data points and cluster centers. However, FCMS 

introduces a novel dimension to the objective function—a 

penalty term. This addition facilitates the preservation of 

proximity among neighboring pixels or data points, 

particularly beneficial when handling datasets with less-

defined cluster boundaries. 

 

Our experiments, both on synthetic datasets and real-world 

scenarios, underscores FCMS’s efficacy in diverse situations. 

Notably, in synthetic datasets featuring gradually converging 

clusters, FCMS outshines FCM by adeptly preserving 

proximity within clusters.  

 

Parameter sensitivity emerges as a noteworthy aspect, with 

the fuzzifier (m), penalty parameter (), and the number of 

neighbours (Nk) playing crucial roles in fine-tuning FCMS’s 

performance. This adaptability ensures the algorithm’s 

applicability across various dataset characteristics.  

 

5. Conclusion and Future Scope  
 

We introduced FCMS, an extension of the FCM algorithm 

designed to address the limitations of conventional clustering 

methods in scenarios with complex spatial characteristics. 

(a) m=1.5 (b) m=2 

(b) m=1.5, Nk=5 (a) m=2, Nk=20 
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While traditional FCM excels in well-defined clusters, FCMS 

incorporates spatial/neighbourhood information to handle 

datasets with unclear cluster boundaries or spatial continuity. 

We have shown that conventional FCM fails to extract the 

pattern from Figure 2. This paper highlighted FCMS's 

adaptability beyond image data, showcasing its effectiveness 

in non-image datasets as shown in Figure 4. The inclusion of a 

penalty term in the objective function facilitates the 

preservation of proximity among neighboring data points, 

proving beneficial in datasets where natural clusters lack 

compactness. We have shown that we get more intuitive result 

for Nk=80 then Nk=10. Experiments on synthetic and real-

world datasets demonstrated FCMS's efficacy in diverse 

scenarios and we quantify the results in terms of NMI and 

ARI. The paper emphasized parameter sensitivity, 

highlighting the roles of the fuzzifier, penalty parameter, and 

the number of neighbors in fine-tuning FCMS's performance. 

 

In this paper, our exploration showcased a notable 

enhancement in clustering performance through the 

application of FCMS, especially evident in non-image datasets 

where traditional FCM methods face challenges. By 

integrating spatial information, FCMS emerges as a valuable 

tool in the domain of cluster analysis, holding great promise 

for diverse real-world applications. Our future endeavors aim 

to broaden the scope by extending the utilization of 

neighbourhood information to manifold learning. The 

exploration of geodesic distance in this context serves as a 

testament to the evolving versatility of FCMS. 
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