

 © 2022, IJCSE All Rights Reserved 1

International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol. 10, Issue.8, August 2022 E-ISSN: 2347-2693

Developing Pragmatic Data Pipelines using Apache Airflow on Google

Cloud Platform

Sameer Shukla

Lead Software Engineer, Texas, USA

Author’s Mail Id: sameer.shukla@gmail.com, Tel.: +1-480-754-9793

DOI: https://doi.org/10.26438/ijcse/v10i8.18 | Available online at: www.ijcseonline.org

Received: 22/Jul/2022, Accepted: 06/Aug/2022, Published: 31/Aug/2022

Abstract— Data Pipeline[1][2] is a series of actions which moves data from the one source to the destination, the

complexity of Data Pipeline varies from use-case to use-case. The traditional data pipeline cleanups the data, aggregates

the data and move it from one place to another, it sounds simple but it’s very complex as the organization deals with huge

and complex data and the expectation from pipeline is that it should be robust, fast, notify about the status and it should do

the same task repeatedly without failing. The modern data pipelines are slightly different in nature they are supposed to

deal with Petabytes of data, they stores the data in various flavors of the cloud, should provide real-time data analysis.

Apache Airflow is one such tool which simplifies the entire Data Pipeline creation to a great extent and the only pre-

requisite is the basic Python Knowledge. This paper focuses on the stock-exchange data pipeline creation by using the

Airflow concepts such as DAGs and Operators.

Keywords—Data-Pipeline, Python, Pandas, Seaborn, Apache-Airflow, GCP, Kaggle.

I. INTRODUCTION

Pipelines can be categorized into two, ETL Pipeline[4][5]

and Data Pipelines[6][7]. ETL stands for Extract

Transform and Load whereas Data Pipeline is generic

which is supposed to move data from various systems to

another and it may or may not transform the data in

between, transformation may include filtering,

aggregating, cleaning and data analysis while moving data

from source to destination.

 Figure 1: Description of ETL flow

There are various challenges in the ETL data flow [8] the

data extraction process can be much slower depending on

the data volume because if the volume is huge, it can

impact the extraction process. As well as Orchestration and

monitoring process can be complicated too because we

need to monitor at various levels of extraction. Whereas

the Data Pipelines are supposed to be Modern in nature,

they should provide real-time data processing updates, they

should be seamlessly deployable to any Cloud [9][10], and

the architecture should be fault tolerant.

 Figure 2: Description of Data Pipeline

Whether any step failed during the processing the

expectation is the pipeline should provide real-time update,

it should notify the users what’s going on with-in the

pipeline. Pipeline should process large volume of data and

they should operate in self manage mode, by self-manage

mode means they should trigger either automatically or on

demand basis, in case of failures Pipeline should know

how and when to cleanup, also every pipeline should be so

modern that it has some managed services available for

deployment on the cloud [10][11] for example: The

managed service for Spark [12] on Google Cloud Platform

is Dataproc similarly the tool we are using to create our

pipelines should have some managed service on the cloud.

To simplify the characteristics and the challenges we

discussed in both Traditional ETL Pipeline and Modern

Data Pipeline we can build our pipelines using Apache

Airflow[13]

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 2

II. RELATED WORK

The Mission in this paper is to create a efficient pipeline

using Apache Airflow, we must understand what Airflow

is and the core components of Airflow which helps in

Pipeline Creation. Apache Airflow[13] is an open-source

workflow management tool and it is based on Python,

fundamentally the Pipeline in Airflow is represented as

DAG and DAG stands for Directed Acyclic Graph.

 Figure 3. Airflow Pipeline Example

In the Figure above we can there is a Source and bunch of

Operators which is running inside a DAG and a destination.

In simple words Airflow Pipeline consists of DAG which in

turn consists of Operators and in combination it formed a

Modern Pipeline, as discussed in Introduction section about

the characteristics of modern pipeline which consists of

efficient monitoring, real-time updates about the pipeline

etc, all these characteristics in a DAG will be coded as

Airflow Operator, let’s understand in detail about DAG and

Operators.

A. Directed Acyclic Graph (DAG): DAG[14][15][16] is a

kind of a grapg with nodes and edges, edges should always

be directed in a DAG and node in a graph is a task, let’s

understand by an simple example, consider we are

establishing a Pipeline for setting up dataproc on GCP

using Airflow. Figure 4 represents a valid DAG where

every edge is directed although it’s sequential but it is

correct, Step first is creating a DataProc cluster on GCP

this is done via ready-

Figure 4: Pipeline Creating DataProc Cluster on GCP

made Operator called ‘DataprocCreateClusterOperator’,

step 2 is submitting a Spark Job because Dataproc is a

managed service on GCP which runs Spark Job,

Submitting a Job another Node and node is Operator this

step is taken care by ‘DataprocSubmitJobOperator’, step 3

is deleting a cluster which can be done via

‘DataprocDeleteClusterOperator’, so we can say that DAG

in Airflow consists of Operator and it should not contain

any loop, all the edges should always be directed.

Figure 5: Example of Invalid DAG in Airflow

The Invalid DAG contains a Loop, in the above diagram

after submitting a Job again a call will be made to create a

Cluster, this DAG will never terminate and it’s a very

expensive DAG as it is stuck in a Loop and keep creating

multiple Clusters on Google Cloud Platform.

Below program is the simple DAG written in Python

Programming Language

def display():

 print("Example of DAG one")

with DAG(dag_id="dagOne",

start_date=datetime(2021,5,23),

schedule_interval="@hourly",

 catchup=False) as dag:

 task = PythonOperator(

 task_id="display",

 python_callable=display)

task

Figure 6: DAG with Single Operator

This the pictorial representation of the sample code of the

DAG, it contains of only one Operator which is

PythonOperator and PythonOperator is used to invoke

Python Functions in a DAG.

B. Operators: Operators are tasks in Airflow, there are

various ready to use Operators available in Airflow for

various uses, as we have already seen four operators so far,

for creating a Dataproc Cluster, Submitting a Spark Job,

Deleting a Cluster and PythonOperator for executing

Python functions. Airflow tasks can run in parallel as we

have seen each task is a Operator but there are several

Operators can run in parallel in Airflow. PythonOperator is

a very powerful Operator exists in Airflow, as of now there

are no ready to use operators available for Kafka

Integration, say we have a csv file and we want to send

each row of the csv file to Kafka as a part of Airflow

Pipeline we can use PythonOperator, sample code may

look like

def csvRowsToKafka(**context):

 filename = 'sample.csv'

 file = open(filename, 'r')

 file_reader = csv.DictReader(file)

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 3

 for row in file_reader:

 """

 Send row data to Kafka

 """

 return

with

DAG(dag_id="kafkaDag",start_date=datetime(2021,5,23),

schedule_interval="@hourly", catchup=False) as dag:

 task = PythonOperator(

 task_id="csv_data_to_kafka",

 python_callable=csvRowsToKafka)

Airflow has a collection of lots of Operators which are

ready to use for almost every cloud platform, GCP, AWS,

Azure and much more.

 C. Monitoring

 Airflow UI is very intiuitive and excellent for monitoring.

Figure 7: Airflow UI Running on Local

 The above Image is a execution of below code

def taskOne():

 print("Task One Completed")

def taskTwo():

 print("Task Two Completed")

def taskThree():

 print("Task Three Completed")

with DAG(dag_id="dagOne",

start_date=datetime(2022,1,23),

schedule_interval="@hourly", catchup=False) as dag:

 task_one = PythonOperator(

 task_id="taskOne",

 python_callable=taskOne)

 task_two = PythonOperator(

 task_id="taskTwo",

 python_callable=taskTwo)

 task_three = PythonOperator(

 task_id="taskThree",

 python_callable=taskThree)

task_two.set_upstream(task_one)

task_three.set_upstream(task_two)

It’s a straightforward DAG with three Operators and all of

them are PythonOperators which is simply executing a

Python functions and functions in turn displaying messages

on the console. The UI is very detailed, apart from tracking

the real time progress we can also track the performance of

each task, how much time each task has taken to execute

 Figure 8: Performance of each task

In case if any task failed during execution, it highlights the

failed task as well.

Figure 9: Failed Task

C. Running tasks in Parallel: In the above DAG all

thtasks are running sequentially, Running tasks in parallel

is straightforward in Airflow, all we need to do is to tweak

the execution at the end and in turn it executes the tasks in

Parallel. Consider a DAG with three tasks and let’s airflow

execute them in parallel.

Figure 10: Task Execution in Parallel

We can see Airflow executed the task in parallel and the

simple change is to put the tasks in brackets

def taskOne():

 print("Task One Completed")

def taskTwo():

 print("Task Two Completed")

def taskThree():

 print("Task Three Completed")

with DAG('dagOne',

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 4

 start_date=datetime(2022, 1, 1),

 schedule_interval="@hourly") as dag:

 t1 = PythonOperator(

 task_id='task_one',

 python_callable=taskOne,

 email_on_failure=True,

 dag=dag)

 t2 = PythonOperator(

 task_id='task_two',

 python_callable=taskTwo,

 dag=dag)

 t3 = PythonOperator(

 task_id='task_three',

 python_callable=taskThree,

 dag=dag)

t1 >> [t2, t3]

t1 >> [t2, t3] will execute the tasks in Parallel. In this

section we have learned the building blocks of Airflow.

III. MEHODOLOGY

In this paper we are going to build pipelines, we are going

to learn by developing multiple pipelines, we have already

seen one use case of building a GCP Dataproc Cluster

using Airflow, the first use-case would be to building

Stock Exchange Pipeline,

A. Use-Case One

Figure 11: Stock Exchange Pipeline

In this use case we will explore the stock exchange dataset

from Kaggle, imagine the file is uploaded on Google

Cloud Storage the file will be downloaded first from

GCS[20] then each row is parsed and published to Kafka

as well as each row is transformed, here transformation

means filtering, we will be filtering all the rows where

value of Index is ‘NYA’ and the value of ‘Open’ is greater

than 600 plus Date should be greater than 1
st
 Jan 2020.

Once the filtering is done, all the filtered rows will be

written to a separate CSV and top 5 rows with highest

value ‘Open’ will plotted and email is sent to the team

stating the data pipeline execution is successful. Below is

the snapshot of the data set from Kaggle.

Below Figure showcases the Stock Exchange Pipeline in

execution, this pipeline is a combination of Parallel task

execution and sequential task execution.

Figure 12: Stock Exchange Pipeline in Execution

Code below is the DAG, which consists of four tasks as

discussed and show-cased in the Figure 12 above.

with DAG('data_pipeline',

 start_date=datetime(2022, 1, 1),

 schedule_interval="@hourly") as dag:

 t1 = PythonOperator(

 task_id='download_file',

 python_callable=download,

 email_on_failure=True,

 dag=dag)

 t2 = PythonOperator(

 task_id="csv_data_to_kafka",

 python_callable=csvRowsToKafka)

 t3 = PythonOperator(

 task_id='transform',

 python_callable=transformAndPlot,

 dag=dag)

 t4 = EmailOperator(

 task_id="SendStatusEmail",

 to='sameer.shukla@gmail.com',

 subject='Pipeline Status!',

 html_content='<p>Pipeline execution successful!

<p>',

 dag=dag)

chain(t1, [t2, t3])

[t2,t3] >> t4

This DAG is slightly different than what we have seen so

far, it is using the ‘chain’ function to chain the sequential

and parallel task.

Let’s check each function used in DAG

def csvRowsToKafka(**context):

 index_file = 'indexData.csv'

 file_name = open(index_file, 'r')

 file = csv.DictReader(file_name)

 for row in file:

 """

 Publish Rows To Kafka

 """

 return

def transformAndPlot():

 df = pd.read_csv('./indexData.csv',

skipinitialspace=True)

 nyadf = df[(df['Index'].str.replace(' ', '') ==

'NYA') & (df['Open'] > 600) & (df['Date'] > "2020-01-

01")]

 sortdf = nyadf.sort_values(by='Open',

ascending=False).iloc[0:5]

 sortdf['Open'].plot(kind="bar")

Result of transformAndPlot function discussed below

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 5

Figure 13: Filtered Stock Exchange Pipeline in Execution

Plot

Figure 14: Top 5 Open Data

B. Use-Case Two

Figure 15: Sample ETL Pipeline

The above picture depicts the use-case two, which is very

much like the Use-case one. The difference is, in this case

data will be fetched from different data sources like

Postgres DB and files from GCS Bucket, the entire data is

submitted to Dataproc as Spark Job for further Data

Processing and once done send an email to Users.

with DAG('spark_pipeline',

 start_date=datetime(2022, 1, 1),

 schedule_interval="@hourly") as dag:

 t1 = PostgresOperator(

 task_id="postgres_task",

 postgres_conn_id="postgres_default",

 sql="SELECT * FROM Table;",

)

 t2 = PythonOperator(

 task_id="download_file_from_GCS",

 python_callable=download)

 t3 = DataprocSubmitJobOperator(

 task_id='submitSparkJob',

 python_callable=submitSparkJob,

 dag=dag)

 t4 = EmailOperator(

 task_id="SendEmail",

 to='sameer.shukla@gmail.com',

 subject='Status!',

 html_content='<p>Pipeline execution successful!

<p>',

 dag=dag)

chain(t1, [t2, t3])

[t2,t3] >> t4

Above sample code represents DAG with various

Operators required for the execution of the pipeline.

PostgresOperator is a ready to use Operator for interacting

with Postgres, DataprocSubmitJobOperator is an operator

used for Submitting Spark Job again it’s a ready to use

operator in Apache Airflow. The image below shows the

Pipeline in execution

Figure 16: Spark Job Pipeline

C. Use-Case Three

This is the most interesting use-case, using Apache

Airflow in Microservices environments. Imagine we have

multiple REST Microservices running in the environments,

and we want to create a dashboard of how many HTTP

Requests each one of them is receiving. Every

microservice should have an Actuator[22][23] exposed, we

can leverage an Actuator endpoint called httpTrace, the

httpTrace Endpoint can provide information on how many

HTTP Requests received and what kind of Responses

served by the service. Utilizing this Actuator endpoint, we

can create a dashboard using Pandas, Matplotlib,

Microservice Actuator and Airflow.

Figure 17: Airflow invoking Actuator

This use-case is not limited to /httpTrace there are various

other Actuators exists one of them is /logfile to find the

contents of the logs and that can be hand it over to Spark

for further analysis. We have already seen how to submit

the Job in Spark on GCP on Dataproc.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 6

Figure 18: Airflow invoking REST APIs

For invoking REST APIs in Airflow

“SimpleHTTPOperator” should be used and again it’s a

ready to use operator.

with DAG('rest_pipeline',

 start_date=datetime(2022, 1, 1),

 schedule_interval="@hourly") as dag:

 t1 = SimpleHttpOperator(

 task_id='serviceOne',

 method='GET',

 http_conn_id='call_service_one',

 headers={"Content-Type":"application/json"},

 dag=dag)

 t2 = SimpleHttpOperator(

 task_id='serviceTwo',

 method='GET',

 http_conn_id='call_service_two',

 headers={"Content-Type": "application/json"},

 dag=dag)

 t3 = SimpleHttpOperator(

 task_id='serviceThree',

 method='GET',

 http_conn_id='call_service_three',

 headers={"Content-Type": "application/json"},

 dag=dag)

 t4 = PythonOperator(

 task_id='dashboard',

 python_callable=dashboard,

 dag=dag)

chain([t1, t2, t3], t4)

Since the three services are invoked In Parallel that’s why

they are chained.

IV. RESULTS AND DISCUSSION

Apache Airflow is an excellent open-source workflow

management tool which can be used to design and develop

any kind of Pipeline, it doesn’t matter how complex is the

pipeline it is simplified by Airflow to a great extent.

Apache Airflow UI provides us with all sorts of details

about the DAGs like the performance of each task, Let’s

consider again a DAG with four tasks

Figure 19: Sample Pipeline with Four tasks

Through UI we can monitor how much time each task has

taken to complete and what’s the performance in a day,

from the Task Duration tab we can check the progress

Figure 20: Metrics of all Four tasks

Also, we can check how many tries each task has

performed even re-tries as well. The Monitoring tool is too

intuitive and easy to debug, monitor, configure and track

the pipeline.

Figure 21: Tries of all Four tasks

Landing times,

Figure 22: Landing times.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 7

The Landing Page of the monitoring tool show cases all

the DAGs deployed in the Airflow

Figure 23: All DAGs in Airflow

Each DAG can be executed, refreshed, and deleted on

demand-basis. DAG will be hot deployed to Airflow we

don’t have to manually deploy, it’s real time deployment.

As soon as we make changes in the DAG (.py file) it will

be refreshed and deployed automatically. Configurations of

sending failure email in case the task is failed for some

reason is extremely simple, by using Simple Python

dictionaries we can configure the DAG below code

showcases how to send email in case of failures.

t3 = SimpleHttpOperator(

 task_id='serviceThree',

 method='GET',

 http_conn_id='call_service_three',

 headers={"Content-Type": "application/json"},

 on_failure_callback=email,

 dag=dag)

The attribute responsible for sending email in case of

failure is “on_failure_callback” and the email is a python

callable function

def email(contextDict, **kwargs):

 title = "Alert: {task_name} Failed because of

reason".format(**contextDict)

 body = """

 Hi Team,

 Task ID :{task_name} Failed.

 """.format(**contextDict)

 title('abcd@gmail.com', title, body)

V. CONCLUSION AND FUTURE SCOPE

Airflow can work on any Cloud Platform including Google

Cloud Platform, AWS, Azure, and others. Once deployed

on Cloud it’s easily scalable because Airflow is managed

by the Kubernetes engine. In Google Cloud Platform,

Cloud Composer is a managed service for Apache Airflow,

Cloud Composer has a seamless integration with other

GCP components such as Google Cloud Storage, Big

Query, Dataproc, Dataflow etc. This has a added advantage

as Airflow can communicate to these services on Google

Cloud Platform. There can be a use-case such as loading a

file from one bucket from GCS and after processing it

move to different GCS bucket, various ready to use

operators are developed by Airflow team for such

operations one of them is GCSToGCSOperator and the

paper already described about the Dataproc Operators by

Airflow. Airflow DAG can also be triggered by Google

Cloud Function and Airflow DAG is also capable of

calling Cloud Function during the Pipeline execution, the

cloud function can be invoked simply by

SimpleHTTPOperator, below code does the same.

t5 = SimpleHttpOperator(

 task_id="Cloud_Function_Task",

 method='POST',

 http_conn_id='http',

 endpoint='functionaName',

 data=({"schema": "", "table": ""}),

 headers={"Content-Type": "application/json"})

Airflow is extremely flexible the DAG can run themselves

in scheduled time and DAG can also be executed using

Google Function or even through pub-sub event. Airflow

UI is extremely efficient for monitoring and tracking

progress of the tasks within the Airflow, the UI is so

detailed that it provides logs, performance metrics using

Graphs and Charts. Airflow can be setup on GCP using

Cloud Composer and on local it can run on Docker, the

sample docker-compose.yml is available to download and

run Airflow inside Docker Container. The main

components of Airflow to get started are DAG, Operator,

Sensor, Executor, 3Com’s, Hook etc.

ACKNOWLEDGMENT

I would like to express sincere appreciation the Apache

community for launching Airflow and preparing a crisp

documentation to get started on the tool, specially the

“airflow.apache.org” portal. The Documentation is very

detailed it explains all the operators which are ready to use

and how they function. Extremely Thankful to

“astronomer.io” they have solved lots of Airflow related

problems where the engineers stuck, and the solution

provided by them are helpful. They have covered very use-

cases like usage of Airflow in Machine Learning, Data

Science, Operation Analytics.

The Slack community of Airflow is extremely active and

very responsive, since Airflow is open source, anybody can

be the part of Slack community and take the guidance or

start contributing to Airflow. Sincere appreciation team to

the Cloud team for developing managed services for

Airflow which makes the development extremely

convenient.

REFERENCES

[1] P. Covington, J. Adams and E. Sargin, "Deep neural networks

for youtube recommendations", Proceedings of the 10th ACM

conference on recommender systems, pp. 191-198, 2016.

[2] H. H. Olsson and J. Bosch, "From opinions to data-driven

software r&d: a multi-case study on how to close the’open

loop’problem", 2014 40th EUROMICRO Conference on

Software Engineering and Advanced Applications, pp. 9-16,

2014.

[3] Panos Vassiliadis, ‘A Survey of Extract-Transform-Load

Technology.,’ July 2009 International Journal of Data

Warehousing and Mining 5:1-27

[4] Tziovara, V., Vassiliadis, P., & Simitsis, A. (2007). Deciding

the Physical Implementation of ETL Work- ows. Proceedings

ACM 10th International Workshop on Data Warehousing and

OLAP (DOLAP 2007), pp. 49-56, Lisbon, Portugal, 9

November 2007.

 International Journal of Computer Sciences and Engineering Vol.10(8), Aug 2022, E-ISSN: 2347-2693

 © 2022, IJCSE All Rights Reserved 8

[5] Vassiliadis, P., & Simitsis, A. (2009). Extraction-

Transformation-Loading. In Encyclopedia of Da-tabase

Systems, L. Liu, T.M. Özsu (eds), Springer, 2009.

[6] Florian Waa, Tobias Freudenreich, Robert Wrembel, Maik

Thiele, Christian Koncilia, Pedro Furtado, ‘OnDemand ELT

Architecture for Right-Time BI: Extending the Vision’,

International Journal of Data Warehousing and Mining 9(2):21-

38 · April 2013

[7] FabianPrasser, HelmutSpengler, RaffaelBild, JohannaEicher,

Klaus A.Kuhn, ‘Privacy-enhancing ETLprocesses for

biomedical data’, International Journal of Medical Informatics,

Vol.126, pp.72- 81, June 2019.

[8] Ibrahim Burak Ozyurt and Jeffrey S Grethe, ‘Foundry: a

message-oriented, horizontally scalable ETL system for

scientific data integration and enhancement’, Database

(Oxford). 2018; 2018: bay130.C. Wohlin, P. Runeson, M. Host,

M. Ohlsson, B. Regnell, ¨ and A. Wesslen. ´ Experimentation in

Software Engineering. Computer Science. Springer, 2012.

[9] Venters, W., Whitley, E.A.: A Critical Review of Cloud

Computing: Researching Desires and Realities. J. Inf. Technol.

27, 179–197, 2012.

[10] Justin, C., Ivan, B., Arvind, K. and Tom, A. “Seattle: A

Platform for Educational Cloud Computing”SIGCSE09, March

37, 2009, Chattanooga, Tennessee, USA. 2009.

[11] Google Apps Education Edition: communication, collaboration,

and security in the cloud.http://www.google.com/a/edu/

[12] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust,Ankur Dave, Xiangrui Meng, Josh Rosen,

Shivaram Venkataraman, Michael JFranklin, et al. Apache

spark: a uni ed engine for big data processing. Commu-

nications of the ACM, 59(11):56–65, 2016.

[13] Creating Data Pipelines using Apache Airflow "Sameer Shukla"

Volume 9 - Issue 4 International Journal of Computer

Techniques (IJCT) ,ISSN:2394-2231 , www.ijctjournal.org

[14] S. Fortune, J. Hopcroft, J. Wyllie The directed subgraph

homeomorphism problem Theoret. Comput. Sci., 10, pp. 111-

121, 1980.

[15] C.L. Lucchesi, M.C.M.T. Giglio, On the irrelevance of edge

orientations on the acyclic directed two disjoint paths problem,

IC Technical Report DCC-92-03, Universidade Estadual de

Campinas, Instituto de Computação, 1992.

[16] Y. Perl, Y. Shiloach Finding two disjoint paths between two

pairs of vertices in a graph J. ACM, 25, pp. 1-9, 1978.

[17] R. Agrawal and R. Srikant, "Mining Sequential Patterns", Proc.

Int'l Conf. Data Eng. (ICDE '95), pp. 3-14, 1995.

[18] J. Chen and K. Xiao, "BISC: A Binary Itemset Support

Counting Approach Towards Efficient Frequent Itemset

Mining", ACM Trans. Knowledge Discovery in Data..

[19] Vassiliadis, P., Simitsis, A., Georgantas, P., Ter-rovitis, M.,

& Skiadopoulos, S. (2005). A generic and customizable

framework for the design of ETL scenarios. Information

Systems, 30, 7, 492-525, 2005.

[20] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau and S. Tata, "A

Precise Metamodel for Open Cloud Computing Interface", the

8th International Conference on Cloud Computing (CLOUD).

IEEE, pp. 852-859, 2015.

[21] D. C. Schmidt, "Model-Driven Engineering", COMPUTER-

IEEE COMPUTER SOCIETY-, vol. 39, no. 2, pp. 25, 2006.

[22] Bryant, P. G. and Smith, M (1995) Practical Data Analysis:

Case Studies in Business Statistics. Homewood, IL: Richard D.

Irwin Publishing.

[23] Zimmermann, O. (2009). An architectural decision modeling

framework for service oriented architecture design. PhD thesis,

Universitat Stuttgart.

[24] Badidi, E. (2013) “A Framework for Software-As-A-Service

Selection and Provisioning”. In: International Journal of

Computer Networks & Communications (IJCNC), 5(3): 189-

200, 2013.

[25] F. Montesi and J. Weber, “Circuit Breakers, Discovery, and API

Gateways in Microservices,” ArXiv160905830 Cs, Sep. 2016

[26] G. Grahne and J. Zhu, "Efficiently Using Prefix-Trees in Mining

Frequent Itemsets", Proc. Workshop Frequent Itemset Mining

Implementations (FIMI '03), 2003.

[27] Z. Zhang and M. Kitsuregawa, "LAPIN-SPAM: An Improved

Algorithm for Mining Sequential Pattern", Proc. Int'l Special

Workshop Databases for Next Generation Researchers, pp. 8-

11, 2005.

AUTHORS PROFILE

Sameer Shukla has done Masters in

Computers from Bangalore

University, India in 2004.

He is having 15 years of experience

in Software Design and

Development, Currently Working as

a Lead Software Engineer in USA

and his current expertise/interests are

Distributed Computing, Data Analytics, Microservices,

Functional Programming, Cloud Computing, Deep

Learning, SQL, NoSQL, Big Data, Spark, Data Science,

Apache Airflow.

http://www.ijctjournal.org/

