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Abstract— In this paper, the differential equation of motion of the classical Helmholtz-Duffing oscillator, Van der Pol, Duffing 

oscillator and Duffing-Van der Pol oscillator equations have been solved analytically with the help of a new integral transform 

named Aboodh transform and homotopy perturbation method. By recasting the governing equations as nonlinear eigenvalue 

problems, we have obtained the excellent approximate analytical solution of the displacement and the relation between 

amplitude and angular frequency. We have also compared our results with exact numerical results graphically for few cases. 

Here, we have also demonstrated the sophistication and simplicity of this technique. 
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I.  INTRODUCTION  

Many complex problems in nature are due to nonlinear 

phenomena. Nowadays, nonlinear processes are one of the 

biggest challenges in finding solutions and are not easy to 

control, because the nonlinear characteristic of the system 

abruptly changes due to small changes of valid parameters, 

including time. Thus, the issue becomes more complicated 

and, hence, needs an ultimate solution. Therefore, the study 

of approximate solutions of nonlinear differential equations 

(NDEs) plays a crucial role in understanding the internal 

mechanisms of nonlinear phenomena. Advanced nonlinear 

techniques are significant in solving inherent nonlinear 

problems, particularly those involving differential equations, 

dynamical systems, and related areas. In recent years, 

mathematicians, engineers, and physicists have made 

significant improvements in finding new mathematical tools 

related to NDEs and dynamical systems, whose 

understanding will rely not only on analytical techniques, but 

also on numerical and asymptotic methods. These 

professionals have established many effective and powerful 

methods to handle the NDEs. The study of given nonlinear 

problems is of crucial importance, not only in all areas of 

physics, but also in engineering and other disciplines, since 

most phenomena in our world are essentially nonlinear and 

are described by NDEs. Moreover, obtaining exact solutions 

for nonlinear oscillatory problems has many difficulties. It is 

very difficult to solve nonlinear problems and, in general, it 

is often more difficult to get an analytical approximation 

solution than a numerical one for a given nonlinear problem. 

There are many analytical approaches to solve NDEs. 

In this article, we have drawn the attention towards the 

solution of the differential equations of the nonlinear 

oscillators as they play an important role in applied 

mathematics, physics and engineering problems. Also in the 

theory of harmonics, there are many important phenomena 

which have practical importance in demonstrating nonlinear 

effects. In science and engineering, there exist many 

nonlinear problems, which do not contain any small 

parameters, especially those with strong nonlinearity. Thus, 

it is necessary to develop and improve some nonlinear 

analytical approximations even for large parameters. 

The solution to the nonlinear problems are difficult to find 

and most of them are not exactly solvable. Although the 

numerical solution to the nonlinear problems is easy, one 

desires to find the analytical solution to get a better insight of 

the problem. There are many techniques for solving 

nonlinear problems such as the harmonic balance method, 

Krylov-Bogoliubov-Mitropolsky method, weighted 

linearization method, perturbation procedure for limit cycle 

analysis, modified Lindstedt-Poincare method, Adomain 

decomposition method, artificial parameter method, and 

Nikiforov-Uvarov method [1-9]. Not only these methods 

have complex calculations, but they fail to handle problems 

with strong non-linearity. 
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The homotopy perturbation method (HPM) has been found 

to be very efficient for solving non-linear equations with 

known initial or boundary values especially for systems with 

strong non-linearity in classical and quantum mechanical 

problems [10-15]. In this method, the solution is given in an 

infinite series usually converges to an accurate solution. 

Aboodh introduced a transform derived from the classical 

Fourier integral for solving ordinary and partial differential 

equations easily in the time (t) domain [16]. Aboodh 

transform (AT) has been applied to different types of 

problems and is found to be very simple but powerful 

technique [17,18]. 

In this article, we have applied Aboodh transform based 

homotopy perturbation method (ATHPM) to solve the 

nonlinear differential equations to obtain the approximate 

displacement x and the oscillating frequency ω with high 

accuracy. 

This paper is organized as follows. In section II, we 

demonstrate briefly the formulation of ATHPM. 

Applications of ATHPM to nonlinear problems have been 

shown in section III. Finally, in section IV we provide a brief 

discussion and our conclusions. 

 

II. FORMULATION OF ATHPM  

Aboodh transform is a new transform which is defined for 

function of exponential order in a set A, where 

1 2{ ( ) : , , 0 | ( ) | , ( 1) [0, )}t jx t M k k x t Me dt t         and 

x(t) is denoted by [ ( )] ( )A x t x  and defined as 
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Some properties of Aboodh Transform which are necessary 

for our calculations are 
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Let us consider a nonlinear non-homogeneous differential 

equation as 

 2( ) ( ) ( ) ( ) ( )Lx t x t Rx t Nx t g t            (5) 

with the initial condition
0

(0) (0)x x and '

0 (0) 0x  . Here, L is 

the second order linear differential operator 2 2( / )L t   , R  

is the linear operator having an order less than L , N is the 

nonlinear operator, ( )g t is the non-homogeneous term and 2  

is any parameter. 

Now, taking the Aboodh Transform on both sides of (5) we 

get 

 2[ ( )] [ ( )] [ ( )] [ ( )] [ ( )]A Lx t A x t A Rx t A Nx t A g t           (6) 

Using the differential properties of the Aboodh Transform as 

mentioned above and the initial conditions (6) can be written
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Taking Inverse Aboodh Transform on both sides of (7) leads 

to 
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where 0 2 2 2 2

1 '(0)
( ) (0)

( )

x
X t x

    

 
  

  
. 

According to the homotopy perturbation method, we can 

write 
0

( ) ( )n

n

n

x t p x t




 and the nonlinear term as 

0

( ) ( )n

n

n

Nx t p H x




   

where He’s polynomial ( )nH x can be written as 

 
0 0

1
( ) ( ) , 0,1,2,3

!

n
n

n nn
n p

d
H x N p x t n

n dp



 

  
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Applying HPM and substituting the value of ( )x t and ( )Nx t in 

(8), we get 
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Equation (10) is the coupling between the Aboodh 

Transform and the homotopy perturbation method using He’s 

polynomials where p is an imbedding parameter. Comparing 

the coefficient of like power of p, we get from (10) the 

following equations 

              0

0 0: ( ) ( )p x t X t          (11) 
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The approximate solution is 

 0 1 2
1

0

( ) lim ( ) ( ) ( ) ( )n

ATHPM n
p

n

x t p x t x t x t x t




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III. APPLICATIONS 

In order to assess the accuracy of the ATHPM which has 

been presented in section II, it is applied to different types of 

nonlinear oscillators and the results are compared with the 

exact results. 

Helmholtz-Duffing Oscillator 

The common form of the differential equation of motion of a 

Helmholtz-Duffing oscillator is given as 

 
2

2 3

2
(1 ) 0

d x
x x x

dt
            (15) 

Here we consider the boundary conditions at t=0, 

(0) , '(0) 0x a x  . Now, for our purpose we rewrite (15) as 

  
2

2 2 2 3

2
1 ( 1)

d x
x x x x

dt
              (16) 

Using Aboodh Transform and applying the boundary 

conditions to (16) we get 
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Taking the inverse Aboodh Transform on both sides of (17) 

we get 
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Applying the HPM, we can write (18) as 
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         (19) 

Equating the coefficient of p
0
 and p

1
, we obtain from (19) 

 0

0: ( ) cosp x t a t                   (20) 
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After some mathematical calculation of inverse Aboodh 

Transform, we get from (21) 

 

 
 

 

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Here, the term sint t  is a secular term which must be 

absent if and only if  
3

21 3
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2 4
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. Hence, 

angular frequency of oscillation is 
23

81 a    and time 

period  23
82 1 aT   . So, we can write the approximate 

solution obtained from (20) and (22) as 
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Duffing Oscillator 

Here we consider a damping Duffing oscillator like [19] 
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3
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x x x
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Applying Aboodh Transform to (24), we get 
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Taking inverse Aboodh Transform and applying the 

boundary conditions we get from (25) 
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Applying HPM to (26) we can write 
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       (27) 

Equating the coefficient of p
0
 and p

1
 from (27) we obtain 

 

0

0

1 1 1 30

1 02 2

: ( ) 1

1 1
: ( )

p x t t

dx
p x t A A A A x

dt 

 

 

    
        

   

           (28) 

After some mathematical calculation of inverse Aboodh 

Transform we get from (28) as 

 2 3 4 5

1

1 1 1
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2 4 20
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So, the approximate solution of (24) up to first order 

correction is obtained from (27) and (29) as 

 2 3 4 51 1 1
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Duffing Oscillator 

Let us consider another damping Duffing oscillator like [20] 
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Applying Aboodh Transform to (31) we get 
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Taking inverse Aboodh Transform and applying the 

boundary conditions we get from (32) 
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Applying HPM to (33) we get 
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Equating the coefficient of p
0
 and p

1
 from (34) we obtain 
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: ( ) 1 5

1 1
: ( )

p x t t

p x t A A x A A x
 

 

 

   
       

   

              (35) 

After some mathematical calculation of inverse Aboodh 

Transform we get from (35) as 

 2 3 4 5

1

10 25 25
( )

3 4 4
x t t t t t           (36) 

So, the solution of (31) up to first order correction is 

 2 3 4 510 25 25
( ) 1 5

3 4 4
ATHPMx t t t t t t            (37) 

Duffing-Van der Pol Oscillator 

Let us consider a Duffing-Van der Pol oscillator as 

 
2

3

2
0, (0) 1, '(0)

d x dx
x x x x

dtdt
             (38) 

Now, we rewrite (38) as 

  
2

2 2 3

2
1

d x dx
x x x

dtdt
             (39) 

Applying Aboodh Transform to (39) we get 

  
2

2 22 2

3

2 2 2 2

1
( ) ( 1) [ ]

1 1
[ ]

x a A x

dx
A A x

dt


 

   


   

   
          

     
           

           (40) 

Taking inverse Aboodh Transform and applying the 

boundary conditions we get from (40) 

 

2 1

2 2

1 1 3

2 2 2 2

1
( ) sin ( 1) [ ]

1 1
[ ]

x t a t A A x

dx
A A A A x

dt

 
 


   



 

  
     

  

        
                 

      (41) 

Applying HPM to (41) we obtain 

 



 

2 1

2 2
0

1

2 20

0 1

2 2

3

0

1
( ) sin ( 1)

1
( )

( ) 1

( )

n

n

p

n

np

n

np

n

np

p x t a t p A

A p x t A

d p x t
A A

dt

A p x t

 
 


 

 






 





 





 
    

 

        

 
        

 

 
  









          (42) 

Equating the coefficient of p
0
 and p

1
 from (42) we obtain 

 0

0: ( ) sinp x t a t                   (43) 

 

 1 2 1

1 02 2

1 1 30

02 2 2 2

1
: ( ) 1 [ ]

1 1

p x t A A x

dx
A A A A x

dt


 


   



 

  
    

  

       
                   

    (44) 

After some mathematical calculation of inverse Aboodh 

Transform and eliminating the secular term, we get the first 

order correction term as 

 
3

1 2

3 1
( ) sin sin sin3

2 332

a
x t ta t t t


  



 
    

 
             (45) 

with angular frequency 
23

81 a    and time period 

 23
82 / 1T a  . So, we can write the approximate 

solution of (38) up to first order correction as 

 
3

2
2

3 1
( ) sin sin sin3

332

at

ATHPM

a
x t ae t t t  



  
   

 
        (46) 

Duffing-Van der Pol Oscillator 

The classical Duffing-Van der Pol oscillator appears in many 

physical problems and is governed by the following 

nonlinear differential equation like [21] 

 
2

2 3

2
(1 ) 0, (0) , '(0) 0

d x dx
x x x x a x

dtdt
               (47) 

Now, we rewrite (47) as 

  
2

2 2 2 3

2
1 (1 )

d x dx
x x x x

dtdt
               (48) 
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Applying Aboodh Transform to (48) we get 

 

2

2 2 2 2

2

2 2 2 2

3

2 2

1 1
( ) ( 1) [ ]

1 1

1
[ ]

x a A x

dx dx
A A x

dt dt

A x

 
   

 
   


 

   
     

    

       
               

 
  

 

              (49) 

Taking inverse Aboodh Transform and applying the 

boundary conditions we get from (49) 

 

2 1

2 2

1 1

2 2 2 2

2 1 3

2 2

1
( ) cos ( 1) [ ]

1 1

1
[ ]

x a t A A x

dx
A A A

dt

dx
A x A A x

dt

  
 

 
   


 



 



  
     

  

       
               

     
           

             (50) 

Applying HPM to (50) we obtain 

 



 

2 1

2 2

0

01

2 20

2
01

2 2 0

1

2 2

1
( ) cos ( 1)

( )1
( )

( )1
( )

1
( )

n

n

p

n

npn

np

n

npn

np

n

np

p x t a t p A

d p x t
A p x t A A

dt

d p x t
A A p x t

dt

A A p x t

 
 


 


 


 








 





 





  











 
  

  
           

  

 
        

 

 
 
 









 
3

0





  
    



  (51) 

Equating the coefficient of p
0
 and p

1
 from (51) we obtain 

 0

0: ( ) cosp x t a t                   (52) 

 

 1 2 1

1 02 2

1 10

2 2 2 2

2 1 30

0 02 2

1
: ( ) 1 [ ]

1 1

1

p x t A A x

dx
A A A

dt

dx
A x A A x

dt


 

 
   


 



 



  
    

  

      
              

     
            

            (53) 

After some mathematical calculation of inverse Aboodh 

Transform and eliminating the secular term, we get the first 

order correction term as 

  
3 3

1 2

3 1
( ) sin sin 3 cos cos3

32 3 32

a a
x t t t t t


    

 
   

 
 
 

  (54) 

With the amplitude 2a  , angular frequency 23
41 a    

and time period  23
42 / 1T a   . So, we can write the 

approximate solution of (47) up to first order correction as 

 

 

3

3

2

3 1
( ) cos sin sin 3

32 3

cos cos3
32

ATHPM

a
x t a t t t

a
t t

   



 



 
   

 

 

           (55) 

 

Figure 1.  Time(t) vs displacement(x) curves obtained from numerical (RK) 

and ATHMP with a = 2, μ = 0.1 and α = 0.01 

We have plotted the displacement x(t) from numerical 

solution for a = 2, µ = 0.1, α = 0.01 and compared the same 

obtained from Runge-Kutta (RK) calculations. It is found 

that the displacement obtained from RK and ATHPM are 

matching very closely. 

When 0  we get equation of motion of nonlinear 

oscillator as 

  
2

2

2
1 0, (0) , '(0) 0

d x dx
x x x a x

dtdt
                     (56) 

and we obtain the approximate solution from (55) as 

 
33 1

( ) cos sin sin3
32 3

ATHPM

a
x t a t t t   



 
   

 
           (57) 
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Figure 2.  Time(t) vs displacement(x) curves obtained from numerical (RK) 

and ATHMP with a = 2, μ = 0.1 and α = 0 

We have plotted the displacement x(t) from numerical 

solution for a = 2, µ = 0.1, α = 0 and compared the same 

obtained from Runge-Kutta (RK) calculations. It is found 

that the displacement obtained from RK and ATHPM are 

matching very closely. 

Classical Fractional Van der Pol Oscillator 

Consider the classical fractional Van der Pol damped 

nonlinear oscillator as [22] 

 
1

3

2
2

2
(1 ) 0, (0) , '(0) 0

d x dx
x x x a x

dtdt
                    (58) 

Now, we rewrite (58) as 

 
1

3

2
2 2 2

2

d x dx dx
x x x x

dt dtdt
              (59) 

Applying Aboodh Transform to (59) we get 

 
1

3

2

2 2 2 2

2 2 2 2

2

2 2

1 1
( ) [ ]

1 1

1

x a A x

dx
A x A

dt

dx
A x

dt

 
   


   


 

   
    

    

                   

   
       

      (60) 

Taking inverse Aboodh Transform and applying the 

boundary conditions we get from (60) 

 
1

3

2 1

2 2

1 1

2 2 2 2

1 2

2 2

1
( ) cos [ ]

1 1

1

x t a t A A x

A A x A

dx dx
A A A x

dt dt

 
 


   


 



 



  
    

  

                   

       
              

                (61) 

Applying HPM to (61) we obtain 

 
 

 

1
3

2 1

2 2
0

1

2 20

1

2 20

0 1

2 2

2
0

0

1
( ) cos

1
( )

1
( )

( ) 1

( )
( )

n

n

p

n

np

n

np

n

np

n

npn

np

p x t a t p A

A p x t A

A p x t A

d p x t
A A

dt

d p x t
A p x t

 
 

 


 


 






 



 





 

 



  
    

 

        

   
        

 
        

 










dt

  
  
   



       (62) 

Equating the coefficient of p
0
 and p

1
 from (62) we obtain 

 0

0: ( ) cosp x t a t                   (63) 

 
1

3

1 2 1

1 02 2

1 1

02 2 2 2

1 20 0

02 2

1
: ( ) [ ]

1 1

1

p x t A A x

A A x A

dx dx
A A A x

dt dt


 


   


 



 



  
   

  

                   

      
             

                (64) 

The Fourier series for  
1

3cos t has been calculated and is 

given by  
1

3

1 2cos cos cos3t b t b t      where 

1 21.15960, 0.231919b b   . With the help of (63) we get 

from (64) 
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   

 

 

 

1
3

1
3

2 1

1 1 2 2

3
1

2 2 2

3
1

2 2

1

2 2

1
( ) cos

1
cos3

4

1
sin

4

1
sin 3

x t a a b A A t

a
a b A A t a

a
A A t

A A t

 
 


 

 




 


 









  
    

  

   
    

    

  
  

  

  
  

  

         (65) 

After some mathematical calculation of inverse Aboodh 

Transform and avoiding the secular terms, by putting 

 
1

32

1 0a a b   and  3

0,
4

aa    we obtain the 

amplitude 2a   and the angular frequency 
1

3

1 0.8547b a   which is same as obtained by the 

iteration procedure [24]. Hence, the approximate periodic 

solution takes the form  ( ) 2cos 0.8547appx t t . The exact 

solution for the classical fractional Van der Pol damped 

nonlinear oscillator is 

  
 1

22 2

2
cos

4
ex ex

t

a
x t

a a e 






 

 

where,
 

 
1

3

5
4

78
43

ex
a








[25]. We get the approximate 

solution of (58) up to first order correction as 

 
 

1
3

2

2

3

( ) cos cos3 cos
8

3 1
sin sin 3

32 3

ATHPM

a b
x t a t t t

a
t t

  



 



  

 
  

 

               (66) 

Rayleigh Equation 

The special case of the fractional Van der Pol damped 

nonlinear oscillator or Rayleigh equation can be represented 

by [26] 

 
32

3

2

1
0, (0) , '(0) 0

3

d x dx dx
x x a x

dt dtdt

  

          

       (67) 

Now, we rewrite (67) as 

 
32

2 2 3

2 3

d x dx dx
x x x

dt dtdt


  

 
      

 
      (68) 

Applying Aboodh Transform to (68) we get 

 

2

2 2 2 2

3

2 2 2 2

3

2 2

1 1
( ) [ ]

1 1

1

3

x a A x

dx
A x A

dt

dx
A

dt

 
   


   



 

   
    

    

     
              

    
     

     

      (69) 

Taking inverse Aboodh Transform and applying the 

boundary conditions we get from (69) 

 

2 1

2 2

1 3 1

2 2 2 2

3

1

2 2

1
( ) cos [ ]

1 1

1

3

x t a t A A x

A A x A

dx dx
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dt dt
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 


   



 



 



  
    

  

     
              

       
                  

                 (70) 

Applying HPM to (70) we obtain 
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A
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
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

 






 



 




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



  
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 

        

   
        

 
        

 

 
 
 
 










 
 
 
  

                (71) 

Equating the coefficient of p
0
 and p

1
 from (71) we obtain 

 0

0: ( ) cosp x t a t                   (72) 
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
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
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

  
   

  

     
              

      
                 

                 (73) 
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Proceeding in the same way as before and avoiding the 

secular terms, 2 33
4 0a a   and 

2 2
41 0,a   we get the 

approximate solution up to the first order correction as 

 
 

3

2

3

( ) cos cos3 cos
32

1
sin sin 3

32 3

ATHPM

a
x t a t t t

a
t t

  



 



  

 
  

 

              (74) 

It is found that 1.51967a  and 1.31607.  The exact 

periodic solution is 

  
 1

22 2 2 2

2
cos

4
ex ex

t

ex ex

a
x t

a a e 


  



 

 

where 
 

 

3
4

5
48

ex








[25].   

IV. CONCLUSION 

We have applied a simple perturbation theory ATHPM to 

solve the nonlinear differential equation of motion for 

nonlinear oscillators. ATHPM is found to give analytic 

solutions with all perturbative corrections to both the 

displacement and the oscillation frequency in a very simple 

and straightforward manner. Here, we attain added realism 

and sophistication of this ATPHM by dealing with the 

differential equation of motion of nonlinear oscillators to 

obtain an analytical expression for the frequency of 

oscillation and the displacement. It is shown that the solution 

converges very fast. Even first order correction is sufficient 

for getting accurate results. This method not only gives very 

accurate numerical values of displacement but also gives an 

idea about the contributions from different harmonics to it. 

We may conclude that this technique is not only simple but 

also elegant way to study a wide class of realistic non-exactly 

solvable problems. 

REFERENCES 

[1] A.H. Nayfeh, D.T. Mook, ―Nonlinear Oscillations‖, John Willey 
and Sons., New York, 1979. 

[2] N.N. Bogoliubov, Y.A. Mitropolsky, ―Asymptotic Methods in the 
Theory of Nonlinear Oscillations‖ Hindustan Publishing 
Company, Delhi, Chap. I, 1961. 

[3] V.P. Agrwal, H. Denman, ―Weighted linearization technique for 
period approximation in large amplitude Nonlinear Oscillations‖, 
J. Sound Vib., Vol.57, pp.463-473, 1985. 

[4] S.H. Chen, Y.K. Cheung, S.L. Lau, ―On perturbation procedure 
for limit cycle analysis‖, Int. J. Nonlinera Mech., Vol.26, pp.125-
133, 1991. 

[5] Y.K. Cheung, S.H. Chen, S.L. Lau, ―A modified Lindstedt-
Pioncare method for certain strong nonlinear oscillations‖, Int. J. 
Non-Linear Mech., Vol.26, pp.367-378, 1991. 

[6] G. Adomain, ―A review of the decomposition method in applied 
mathematics‖, J. Math. Anal. and Appl., Vol.135, pp.501-544, 
1998. 

[7] G.L. Lau, ―New research direction in singular perturbation 
theory, artificial parameter approach and inverse-perturbation 
technique‖, In the proceedings of  the 1997 National Conference 
on 7th Modern Mathematics and Mechanics, pp.47-53. 

[8] A.F. Nikiforov, V.B. Uvarov, ―Special functions of mathematical 
physics‖, Birkhauser, Basel, 1988. 

[9] P.K. Bera, T. Sil, ―Exact solutions of Feinberg-Horodecki 
equation for Time dependent anharmonic oscillator‖,  Pramana-J. 
Phys., Vol.80, pp.31-39, 2013. 

[10] J.H. He, ―Homotopy perturbation technique‖, Comp. Methods in 
Appl. Mech. and Engg., Vol.178, pp.257-262, 1999. 

[11] J.H. He, ―A coupling method of a homotopy technique and a 
perturbation technique for nonlinear problems‖, Int. J. Non-Linear 
Mech., Vol.3, pp.37-43, 2000. 

[12] J. Biazar, M. Eslami, ―A new homotopy perturbation method for 
solving systems of partial differential equations‖, Comp. and 
Math. with Appli., Vol.62, pp.225–234, 2011. 

[13] A. Yildirim, ―Homotopy perturbation method to obtain exact 
special solutions with solitary pattern for Boussinesq-like B(m,n) 
equations with fully nonlinear dispersion‖, J. Math. Phys., Vol.50, 
pp.5–10, 2009. 

[14] M. Gover, A.K. Tomer, ―Comparison of Optimal Homotopy 
Asymptotic Method with Homotopy Perturbation Method of 
Twelfth Order Boundary Value Problems‖, International Journal of 
Computer Sciences and Engineering, Vol.3, pp.2739-2747, 2011. 

[15] P.K. Bera, T. Sil, ―Homotopy perturbation method in quantum 
mechanical problems‖, Applied Math. and Comp., Vol.219, pp. 
3272–3278, 2012. 

[16] K.S. Aboodh, ―The New integral Transform Aboodh Transform‖, 
Global Journal of Pure and Applied Mathematics, Vol.9, pp.35-43, 
2013. 

[17] K. Abdelilah, S. Hassan, M. Mohand, M. Abdelrahim, A.S.S. 
Muneer, ―An application of the new integral transform in 
Cryptography‖, Pure and Applied Mathematics Journal, Vol.5, 
pp.151-154, 2016. 

[18] P.K. Bera, S.K. Das, P. Bera, ―A Study of Nonlinear Vibration of 
Euler-Bernoulli Beams Using Coupling Between The Aboodh 
Transform And The Homotopy Perturbation Method‖, 
International Journal of Computer Sciences and Engineering, 
Vol.5, pp.84-93, 2017. 

[19] B. Bulbul, M. Sezer, “Numerical Solution of Duffing Equation by 
Using an Improved Taylor Matrix Method”, Article ID691614.   

[20] M. Najafi, M. Moghimi, H. Massah, H. Khoramishad, M. Daemi, 
“On the Application of Adomian Decomposition Method and 
Oscillation Equations”, In the 9th International Conference on 
Applied Mathematics, Istanbul, Turkey, 2006. 

[21] Gh. Asadi Cordshooli , A.R. Vahidi, “Silution of Duffing –Van der 
Pol Equation using Decomposition Method”, Adv. Studies Theor. 
Phys., Vol.5, pp.121-129, 2011. 

[22] R.E. Mickens, “Iteration method solutions for conservative and 
limit-cycle x^(1/3) force oscillators”, Journal of Sound and 
Vibration, Vol.292, pp.964-968, 2006. 

[23] I.S. Gradshteyn, I.S. Ryzhik, “Table of Integrals, Series and 
Products”, Academic Press, New York, 1980. 

[24] H.Li Zhang, “Periodic solutions for some strongly nonlinear 
oscillations by He’s energy balance method”, Computer & 
Mathematics with Applications, Vol.58, pp.2480-2485, 2009. 

[25] C.W. Lim, S.K. Lai, “Accrate higher order analytical 
approximate solutions to nonconservative nonlinear oscillators 



   International Journal of Computer Sciences and Engineering                                     Vol.6(1), Jan 2018, E-ISSN: 2347-2693 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        10 

and applications to van der Pol damped oscillators”, International 
Journal of Mechanical Sciences, Vol.48, pp.483-892, 2006. 

[26] J.J. Stoker, “Nonlinear Vibration in Mechanical and Electrical 
Systems”, Wiley, New York, 1992. 

 

Authors Profile 

Dr. P K Bera Associate Professor of Physics, 

Department of Physics, Dumkal College has 

published more than 28 papers in reputed 

international journals. His research of interest 

are quantum mechanics and nonlinear 

dynamical systems. He has 17 years of 

teaching experience and 27 years of research 

experience. 
 

Mr. S K Das pursed Bachelor of Technology 
in Mechanical Engineering from Masnipal 
Institute of Technology, India in year 2015. 
He is currently pursuing M.Tech. in 
Mechanical Engineering from Indian Institute 
of Technology Ropar, India. His main 
research work focuses on Fluid-Structure 
Interaction, Continuum Mechanics  and 
Computational Techniques. 

 

Ms. P Bera is currently pursuing her bachelor 

in Electronics and Communication 

Engineering from Vellore Institute of 

Technology, Tamil Nadu. Her research area 

of interest includes non-linear dynamical 

systems. 

 
 


