Data Mining Techniques for Estimation of Wind Speed Using Weka
B. Hari Mallikarguna Reddy1 , S. Venkatramana Reddy2 , B. Sarojamma3
Section:Survey Paper, Product Type: Journal Paper
Volume-9 ,
Issue-9 , Page no. 48-51, Sep-2021
CrossRef-DOI: https://doi.org/10.26438/ijcse/v9i9.4851
Online published on Sep 30, 2021
Copyright © B. Hari Mallikarguna Reddy, S. Venkatramana Reddy, B. Sarojamma . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: B. Hari Mallikarguna Reddy, S. Venkatramana Reddy, B. Sarojamma, “Data Mining Techniques for Estimation of Wind Speed Using Weka,” International Journal of Computer Sciences and Engineering, Vol.9, Issue.9, pp.48-51, 2021.
MLA Style Citation: B. Hari Mallikarguna Reddy, S. Venkatramana Reddy, B. Sarojamma "Data Mining Techniques for Estimation of Wind Speed Using Weka." International Journal of Computer Sciences and Engineering 9.9 (2021): 48-51.
APA Style Citation: B. Hari Mallikarguna Reddy, S. Venkatramana Reddy, B. Sarojamma, (2021). Data Mining Techniques for Estimation of Wind Speed Using Weka. International Journal of Computer Sciences and Engineering, 9(9), 48-51.
BibTex Style Citation:
@article{Reddy_2021,
author = {B. Hari Mallikarguna Reddy, S. Venkatramana Reddy, B. Sarojamma},
title = {Data Mining Techniques for Estimation of Wind Speed Using Weka},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {9 2021},
volume = {9},
Issue = {9},
month = {9},
year = {2021},
issn = {2347-2693},
pages = {48-51},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=5394},
doi = {https://doi.org/10.26438/ijcse/v9i9.4851}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v9i9.4851}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=5394
TI - Data Mining Techniques for Estimation of Wind Speed Using Weka
T2 - International Journal of Computer Sciences and Engineering
AU - B. Hari Mallikarguna Reddy, S. Venkatramana Reddy, B. Sarojamma
PY - 2021
DA - 2021/09/30
PB - IJCSE, Indore, INDIA
SP - 48-51
IS - 9
VL - 9
SN - 2347-2693
ER -
VIEWS | XML | |
410 | 508 downloads | 196 downloads |
Abstract
Now a day’s neural network plays a vital role in analyzing, interpreting and fitting models. In this paper by taking wind speed as dependent variable and minimum temperature, maximum temperature, visibility, temperature date and time as independent variables, we fitted. M5P, SMO Regression and zero regression models and CV parameter selection criteria is also used for above three models. For computational purpose WEKA Software is used. By measures of accuracy like mean absolute error, root mean square. Relative absolute error, root relative squared error are used to select the best model and also rank them.
Key-Words / Index Term
Wind speed, Zero regression, M5P, SMO regression, WEKA
References
[1] Zeynab Ramedani, Mahmoud Omid and Alireza Keyhani “Modeling solar energy potential in a Tehran province using artificial neural networks”, International Journal of Green Energy, Vol.10, No.4, pp.427-442, 2013.
[2] M Cucumo, A. De Rosa, V. Ferraro, D. Kaliakatsos, V. Marinelli, “Experimental testing of models for estimation of hourly solar radiation an vertical surfaces Arcavancata. Di Rende”, Solar energy, Vol. 81, No.5, pp. 692-695, 2007.
[3] Somaieh Ayalvary, Zohreh Jahani, Morteza Babazadeh, “Select the most relevant input parameters using WEKA for models forecast Solar radiation based on Artificial Neural Networks”, ACSIJ Advances in Computer Science: an International Journal, Vol. 4, No.6(18), pp.38-44, 2015.
[4] T. Khatib, A.Mohamed, and K. Sopian, “A review of solar energy modeling techniques”, Renewable and Sustainable Energy Reviews, Vol. 16 No.5, pp. 2864-2869, 2012.
[5] M. A. Abdul Azeez, Artificial Neural Network Estimation of Global Solar Radiation Using Meteorological Parameters in Gusau, Nigeria, Archives of Applied Science Research, Vol.3, No.2, pp. 586-595, 2011.
[6] P. Usha Sri and B.Narasimha Swamy, Wireless Atmospheric Data Logger for a Sensor Network, International Journal of Computer Sciences and Engineering, Vol.3, No.9, PP. 157-161,2015.
[7] K.V. Shende, V.S.Shirsat , M. R. Ramesh Kumar , K.V. Kale, Artificial Neural Network Model for Prediction of Latent Heat Flux over Bay of Bengal, International Journal of Computer Sciences and Engineering, Vol.7, No-5, PP.901-905, 2019