An Extensive Survey on Text Detection and Recognition
Sheetal Garg1 , Akshatha P S.2 , Kavyashree C.3
Section:Survey Paper, Product Type: Journal Paper
Volume-7 ,
Issue-1 , Page no. 546-551, Jan-2019
CrossRef-DOI: https://doi.org/10.26438/ijcse/v7i1.546551
Online published on Jan 31, 2019
Copyright © Sheetal Garg, Akshatha P S., Kavyashree C. . This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
View this paper at Google Scholar | DPI Digital Library
How to Cite this Paper
- IEEE Citation
- MLA Citation
- APA Citation
- BibTex Citation
- RIS Citation
IEEE Style Citation: Sheetal Garg, Akshatha P S., Kavyashree C., “An Extensive Survey on Text Detection and Recognition,” International Journal of Computer Sciences and Engineering, Vol.7, Issue.1, pp.546-551, 2019.
MLA Style Citation: Sheetal Garg, Akshatha P S., Kavyashree C. "An Extensive Survey on Text Detection and Recognition." International Journal of Computer Sciences and Engineering 7.1 (2019): 546-551.
APA Style Citation: Sheetal Garg, Akshatha P S., Kavyashree C., (2019). An Extensive Survey on Text Detection and Recognition. International Journal of Computer Sciences and Engineering, 7(1), 546-551.
BibTex Style Citation:
@article{Garg_2019,
author = {Sheetal Garg, Akshatha P S., Kavyashree C.},
title = {An Extensive Survey on Text Detection and Recognition},
journal = {International Journal of Computer Sciences and Engineering},
issue_date = {1 2019},
volume = {7},
Issue = {1},
month = {1},
year = {2019},
issn = {2347-2693},
pages = {546-551},
url = {https://www.ijcseonline.org/full_paper_view.php?paper_id=3540},
doi = {https://doi.org/10.26438/ijcse/v7i1.546551}
publisher = {IJCSE, Indore, INDIA},
}
RIS Style Citation:
TY - JOUR
DO = {https://doi.org/10.26438/ijcse/v7i1.546551}
UR - https://www.ijcseonline.org/full_paper_view.php?paper_id=3540
TI - An Extensive Survey on Text Detection and Recognition
T2 - International Journal of Computer Sciences and Engineering
AU - Sheetal Garg, Akshatha P S., Kavyashree C.
PY - 2019
DA - 2019/01/31
PB - IJCSE, Indore, INDIA
SP - 546-551
IS - 1
VL - 7
SN - 2347-2693
ER -
VIEWS | XML | |
314 | 269 downloads | 136 downloads |
Abstract
This paper analyzes, compares, and contrasts the various methods in text detection and extraction. Existing techniques are categorized as either stepwise or integrated. Text detection and extraction can be categorized into sub-problems including text localization, verification, segmentation and recognition. It gives an elaborate view of the various methods applied for these sub problems. A number of benchmark datasets are discussed in details with their attributes.
Key-Words / Index Term
Text detection, text localization, text recognition, text segmentation, survey
References
[1] Y. Zhong, K. Karu, and A. K. Jain, “Locating text in complex color images,” Pattern Recognit., vol. 28, pp. 1523–1535, 1995.
[2] I Haritaoglu, “Scene text extraction and translation for handheld devices,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. 2001, pp. 408–413
[3] J. Liang, D. Doermann, and H. Li, “Camera-based analysis of text and documents: A survey,” Int. J. Doc. Anal. Recognit., vol. 7, pp. 84–104, 2005
[4] S L. Lin and C. L. Tan, “Text extraction fromname cards using neural network,” in Proc. Int. Joint Conf. Neural Netw., 2005, pp. 1818–1823.
[5] X. Chen, J. Yang, J. Zhang, and A. Waibel, “Automatic detection and recognition of signs from natural scenes,” IEEE Trans. Image Process., vol. 13, no. 1, pp. 87–99, Jan. 2004
[6] H. Li and D. Doermann, “Text enhancement in digital video using multiple frame integration,” in Proc. ACM Multimedia Conf., 1999, pp. 19–22
[7] Z. He, J. Liu, H. Ma, and P. Li, “A new automatic extraction method of container identity codes,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 1, pp. 72–78, Mar. 2005
[8] P. Sermanet, S. Chintala, and Y. LeCun, ”Convolutional neural networks applied to house numbers digit classification,” in Proc. IEEE Int. Conf. Pattern Recognit., 2012, vol. 4, pp. 3288–3291
[9] K. I. Kim, K. Jung, and H. Kim, “Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 12, pp. 1631–1639, Dec. 2003
[10] X. Tang, X. Gao, J. Liu, H. Zhang, “A spatial-temporal approach for video caption detection and recognition,” IEEE Trans. Neural Netw., vol. 13, no. 4, pp. 961–971, Jul. 2002
[11] Q. Ye, W. Wang, W. Gao, and W. Zeng, “A robust text detection algorithm in images and video frames,” in Proc. Joint Conf. Inf., Commun. Signal Process. Pac. Rim Conf. Multimedia, 2003, pp. 802– 806
[12] C. Yi Y. Tian "Text string detection from natural scenes by structure-based partition and grouping" IEEE Trans. Image Process. vol. 20 no. 9 pp. 2594-2605 Sep. 2011.
[13] A. K. Jain B. Yu "Automatic text location in images and video frames" Pattern Recognit. vol. 31 no. 12 pp. 2055-2076 1998
[14] C. Garcia X. Apostolidis "Text detection and segmentation in complex color images" Proc. IEEE Int. Conf. Acoustics Speech Signal Process. pp. 2326-2330 2000
[15] X. Chen J. Yang J. Zhang A. Waibel "Automatic detection and recognition of signs from natural scenes" IEEE Trans. Image Process. vol. 13 no. 1 pp. 87-99 Jan. 2004
[16] R. Huang P. Shivakumara S. Uchida "Scene character detection by an edge-ray filter" Proc. IEEE Int. Conf. Doc. Anal. Recognit. pp. 462-466 2013
[17] M. Cai J. Song M. R. Lyu "A new approach for video text detection" Proc. IEEE Int. Conf. Image Process. pp. 117-120 2002
[18] X. Tang X. Gao J. Liu H. Zhang "A spatial-temporal approach for video caption detection and recognition" IEEE Trans. Neural Netw. vol. 13 no. 4 pp. 961-971 Jul. 2002
[19] S. M. Hanif L. Prevost P. A. Negri "A cascade detector for text detection in natural scene images" Proc. IEEE Int. Conf. Pattern Recognit. pp. 1-4 2008
[20] J. Gllavata R. Ewerth B. Freisleben "Text detection in images based on unsupervised classification of high-frequency wavelet coefficients" Proc. IEEE Int. Conf. Pattern Recognit. pp. 425-428 2004
[21] H. Li D. Doermann O. Kia "Automatic text detection and tracking in digital video" IEEE Trans. Image Process. vol. 9 no. 1 pp. 147-156 Jan. 2000
[22] A. Mosleh N. Bouguila A. Ben Hamza "Image text detection using a bandlet-based edge detector and stroke width transform" Proc. Brit. Mach. Vis. Conf. pp. 1-2 2012
[23] X. Zhao K. H. Lin Y. Fu Y. Hu Y. Liu T. S. Huang "Text from corners: A novel approach to detect text and caption in videos" IEEE Trans. Image Process. vol. 20 no. 3 2011
[24] F. Liu X. Peng T. Wang S. Lu "A density-based approach for text extraction in images" Proc. IEEE Int. Conf. Pattern Recognit. pp. 1-4 2008
[25] Z. Liu and S. Sarkar "Robust outdoor text detection using text intensity and shape features" Proc. IEEE Int. Conf. Pattern Recognit. pp. 1-4 2008
[26] R. Minetto N. Thome M. Cord N. J. Leite J. Stolfi "T-HOG: An effective gradient-based descriptor for single line text regions" Pattern Recognit. vol. 46 no. 3 pp. 1078-1090 2013
[27] C. Yi Y. Tian "Localizing text in scene images by boundary clustering stroke segmentation and string fragment classification" IEEE Trans. Image Process. vol. 21 no. 9 pp. 4256-4268 Sep. 2012
[28] Q. Ye Q. Huang W. Gao D. Zhao "Fast and robust text detection in images and video frames" Image Vis. Comput. vol. 23 pp. 565-576 2005
[29] K. Sheshadri S. K. Divvala "Exemplar driven character recognition in the wild" Proc. Brit. Mach. Vis. Conf. pp. 1-10 2012
[30] H. Koo D. H. Kim "Scene text detection via connected component clustering and non-text filtering" IEEE Trans. Image Process. vol. 22 no. 6 pp. 2296-2305 Jun. 2013
[31] L. Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, “reCAPTCHA: Human-Based character recognition via web security measures,” Science, vol. 321, no. 5895, pp. 1465–1468, 2008
[32] W. Kim and C. Kim "A new approach for overlay text detection and extraction from complex video scene" IEEE Trans. Image Process. vol. 18 no. 2 pp. 401-411 Feb. 2009
[33] J. J. Weinman Z. Butler D. Knoll J. Feild "Toward integrated scene text reading" IEEE Trans. Pattern Anal. Mach. Intell. vol. 3 no. 2 pp. 375-387 Feb. 2014
[34] P. Shivakumara W. Huang T. Phan C. Tan " For skewed or perspective distorted text, however, the projection profile analysis method is useless before estimating the text orientation. " Image Vis. Comput. vol. 43 no. 6 pp. 2165-2185 2010
[35] P. Shivakumara T. Q. Phan C. L. Tan "A Laplacian approach to multi-oriented text detection in video" IEEE Trans. Pattern Anal. Mach. Intell. vol. 33 no. 2 pp. 412-419 Feb. 2011
[36] T. Phan P. Shivakumara B. Su C. L. Tan "A gradient vector flow-based method for video character segmentation" Proc. IEEE Int. Conf. Doc. Anal. Recognit. pp. 1024-1028 2011
[37] M. J. Traxler M. A. Gernsbacher “Handbook of Psycholinguistics Amsterdam The Netherlands”:Elsevier 2006
[38] X. Chen J. Yang J. Zhang A. Waibel "Automatic detection and recognition of signs from natural scenes" IEEE Trans. Image Process. vol. 13 no. 1 pp. 87-99 Jan. 2004
[39] K. Sheshadri S. K. Divvala "Exemplar driven character recognition in the wild" Proc. Brit. Mach. Vis. Conf. pp. 1-10 2012
[40] L. Lin and C. L. Tan, “Text extraction fromname cards using neural network,” in Proc. Int. Joint Conf. Neural Netw., 2005, pp. 1818–1823
[41] J. J. Weinman, E. Learned-Miller, and A. Hanson, “Scene text recognition using similarity and a lexicon with sparse belief propagation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 10, pp. 1733–1746, Oct. 2009